Ad- 420 /76

FNL
/209
. AR

N
ect No. |MOI10501A003

INTRODUCTORY PROGRAMMING
A

— (=] e
by i (@]
= - (8’
<T - :
= = > %) m K.
= (] (3] o
e (o £ 2 «
—_— = @) me HIW w
o 3 . _
= . o 9 M.
= L. o
= o

C
FORAST (Formula and Assembly Translator)
J

|
I
I
||||.
|

I
|
|
|
|
|
|

ik
1]l

REPORT NO. 1209

JULY 1963

BALLISTIC RESEARCH LABORATORIES

e P sy P S el V-t

\;\
S
Q

>
N
R

ARE
1% \N

DDC AVAILABILITY NOTICE
Qualified requestors may obtain copies of this report from DDC.

The findings in this report are not to be construed
as an official Department of the Army position.

oe}
x>
=t
[ag
4
n

=}
]
Q

RESEARCH LABORATORTIES
REPORT NO. 1209

JULY 1963

INTRODUCTORY PROGRAMMING FOR ORDVAC AND BRLESC

I

=
EI
7]
i
o~
=
:
[y}
[\
=
a
=3
w
7]
g
o’
et
<
)
]
[\
=
10)]
o]
[}
ct
(o]
L]
~—

Michael J. Romanelli

Computing Laboratory

RDT & E Project No. 1MO10501A00% o ke

ABERDEEN PROVING GROUND, MARYLAND

[}
R

B

td
>
]
]
=
wn
-3
-
(@]
bd
]
5]
5]
o)
28}
Q
m
[
=3
os}
o
j2¢)
fe=3
L=}
o
s
L]
=
[¢2]

REPORT NO. 1209

MJRomanelli/sf
Aherdeen Pravinge
ER IV ALY L v 4 AUV Ll AT

July 1963

the high-speed digital ¢
Programs written in this language, with minor limitations, may be executed

on either computer. BRL Report No. 1172, [l] , describes FORAST in its
generality and was written primarily for professional programmers. This
report is intended for the novice. Fundamental concepts and details of the
language are illustrated in many examples so that the novice is taught how to
program and obtain practical solutions for a variety of mathematical problems.
Intended as a supplement to [l.) , this report does not illustrate the full
generality of the language. Some of the material is repetitious but amplified

and several references are made to [l] .

TABLE OF CONTENTS
PAGE
A B RAC T . vttt et e eetnesnenoneenennenseseasenensnsonnnessenennns 3
INTRODUCTION. oo vvvvunnn et e ettt 7
EVALUATION OF FUNCTIONS....... et e i, o
MAJOR COMPONENTS OF HIGH SPEED DIGITAL COMPUTERS.evveeeeennenn. 10
EXAMPLE 1, SIMPLE PROGRAM. ..ttt itittieteneetnnesenenesnnesssaneeonnnns 13
EXAMPLE 2, IDENTIFYING OUTPUT RESULTS. .. e teneerneennenneennenneennnnn 28
NAMES AND OPFRATIONS......... e ettt e, 31
EXAMPLE 3, SINGLE VALUED FUNCTIONS OF ONE ARGUMENT........ovvvvennnn. 34
EXAMPLE k4, SINGLE VALUED FUNCTTON OF TWO ARGUMENTS........eveeevnn... Ul
EXAMPLE 5, CONVENIENT OUTPUT FORMAT. ... ueiuieeenennnenennnnonnennnens LY
EXAMPLE 6, SIMPLE CONDITIONAL STATEMENT. . ..vv v rrrnnernnneennonennnss 52
EXAMPLE 7, VARIABLE EXITS. ..ttt rrrnnrnnreenneennnns et 60
EXAMPLE 8, INDEXING . . vt et onennenennanennonenesnenesneseonosnonnenns 68
EXAMPLE 9, SORTING, MONOTONE SEQUENCES.0uveeureeennnerenneennnnnns Th
EXAMPLE 10, STORAGE ALLOCATION LISTING..vvtuvneenneeennnernnnennnnnns 83
EXAMPLE 11, FIXED LENGTH TABLE OF FORWARD DIFFERENCES 88
EXAMPLE 12, COMPILATION ERRORS DETECTED......... e e 100
EXAMPLE 13, RUN (EXECUTION) ERRORS DETECTED. ... :veveeenrenneenenennns 104
EXAMPLE 14, VARIABLE LENGTH TABLE OF FORWARD DIFFERENCES............. 107
EXAMPLE 15, MULTIPLE ARGUMENT, MULTIPLE RESULT FUNCTIONS............. 115

8, SOLUTION OF A SYMMETRIC SYSTEM. .\ vvern v ernrennennnennnns

[
¢
[
I:"
=1
|.-J
\O
e
N
!—I
|
wn
¢
=
5
o
2
-3
—
Q
=2
o~
O
[
=)
;
£s)
>
=3
=
=
e’

EXAMPLE 21, MATRIX OPERATIONS, ADDITION, SUBTRACTIOCN,
MULTIPLICATION AND INVERSION...........

EXAMPLE 22, REAL ROOT OF CONTINUQUS FUNCTION, BISECTION.......0oc0....

EXAMPLE 23, REAL ROOT OF CONTINUOUS FUNCTION, NEWTON METHOD..........

{AMPLE 24, REAL ROCT OF CONTINUOUS FUNCTION, REGULA-FALSI...........

EXAMPLE 25, REAL ROOT OF CONTINUOUS FUNCTION, CONSTANT SECANT........

EXAMPLE 25, REAL ROOT OF CONTINUOUS FUNCTION, GENERAL INTERATIVE.....
EXAMPLE 27, POLYNOMIAL LEAST SQUARES. ... vvuttrenteneeeenannenenenn.
EXAMPLE 23, POLYNOMIAL LEAST SQUARES, RESIDUALS, RMS.........evvnn...
EXAMPLE 29, DIFFERENTIAL CORRECTIONS. .. .vtvevrenssnennennsnennenenes

I. INTRODUCTION

The Ballistic Research Laboratories' high-speed computers, ORDVAC and
BRLESC, are used to obtain solutions of mathematical problems. In general,
the numerical solutions are obtained by instructing the high-speed computers

to EVALUATE FUNCTIONS that approximate the solutions desired. Hence, to obtain

solutions from high-speed computers, the computers are instructed to carry out

the detailed operations required to evaluate particular functions of interest.

Conventional mathematical notation, which permits considerable freedom
of expression and in which problems, solutions, and functions are generally
expressed in a form governed by human convenience, 1s not fully acceptable by
high-speed computers. Indeed, the instructions to computers that specify the

essential operations and the numerical quantities involved in the operations

are ultima te_Ly eXpress sed in a PRIMITIVE TANGUAGE that is understood by the

Tl UV Lilo

computer. For most high-speed digital computers, the primitive language
consists of combinations of only two characters, O and 1, the basic characters
of the binary number system. Specific combinations of these characters must

be constructed to represent the sequence of operations and the quantities
required to obtain a numerical solution. The human task of constructing the
required combinations of binary characters is tedious, difficult and highly
susceptible to human error. To simplify this task, HIGHER-LEVEL LANGUAGES are
designed so that computers can be instructed by professionals with programs in
their primitive languages to automatically translate them into their respective
primitive languages. In contrast to the PRIMITIVE LANGUAGE, the HIGHER-LEVEL
LANGUAGES admit combinations of the letters of the alphabet, the decimal digits,
and some mathematical symbols such as + - = . ete. The programs which

automatically accept the higher-level language and carry out the translation

AQOY TLMO T AMADO L A A A Aasn 2

are called COMPILERS, ASSEMBLERS, TRANSLATORS, etc., and generally admit some

of the freedom of mathematical notation together with some English word state-
ments for controlling sequences of operations. Although the higher-level
languages do indeed relieve the human of many tedious details, & novice may
still feel burdened with the necessity for specifying particular details re-

quired in a high-level language.

~

| TR | e TAN

s a high-level language designed for use on ORDVAC and BRLESC.

=

FORAST
BRL Report No. 1172, Llj , describing FORAST in its generality was intended
as a reference manual for professional programmers. This report is intended

SvmmnAd A FrmA + 3 H
s confined tc fundamental concepts and important details

s

for the novice and
illustrated by numerous examples, teaching the novice how to program a variety

of mathematical problems. Each example includes:

a statement of a problem;
a method for obtaining a solution;

P :
t indicating the sequence of the necessary operations;

©
o
o
o]

a program written in FORAST;

a tabulated copy of the results obtained from the computer.

Many of the methods used in the examples were chosen to illustrate particular
concepts of the language and do not necessarily represent the most efficient

solutions in the given situations.

(0]

II. EVALUATION OF FUNCTIONS

: .
o many mathematical problems can be reduced to evaluation and

recording of mathematical functions. Below are listedrthe four associated
operations:
1.) SUBSTITUTION of numerical values for each argument of the functions;
2.) PERFORMING the indicated arithmetic operations;
3.) RECORDING numerical values of relevant functions;
4.) CONTROLLING the sequence of operations involved in 1,2, and 3.

More specifically, to obtain a solution to a problem from a high-speed computer,

we instruct the computer to substitute, to evaluate, to record and to control

all operations required to obtain a solution.

In a given problem, all these operations must be planned in advance and

the comp

A general

uter must receive specific instructions as indicated on a Flow Chart.

Flow Chart is illustrated schematically in FIGURE 1.

BEGIN
—_——

SUBSTITUTE numerical EVALUATE and RECORD

values for variables, } numerical values of

constants, parameters, relevant functions.

etc.

, \

SUBSTITUTE other Yes DETERMINE whether
numerical values of pe———— further evaluations
interest are desired

No

(o)

___/

Before describing the fundamental concepts of
next the major components of the computers and the

their use in obtaining a solution of a problem.

the language, we consider

function of each as regards

Fomm -
CONTROL ST 1
QLR ' STORAGE |
]
V4
Y
7
V4
INPUT INTERNAL OUTPUT
DEVICES > STORAGE DEVICES
(MEMORY)
L }
ARITH
UNIT
FIGURE 2.
MAJOR COMPONENTS OF HIGH-SPEED DIGITAL COMPUTERS

The components shown in FIGURE 2. are typical

computers. The input nerally consist of

reading paper cards, magnetic or paper tape.¥ The

{ = A \ N
perforated, (i.e., holes are punched in them), wh
of punches define specific characters. On magnet

To record information on paper cards or paper tape, the cards or tapes are

erein specific combinations
ic tape, specific combi-

nations of small magnetized areas correspond to specific characters.

10

these devices together with high-speed printers and other optical or photo-

graphic devices for output. The input-output devices may also serve as

e
............... un ma nd are used as in

external storage units. Magnetic tape units m
put devices or even as external storage. Hence input and output devices are
used to get information into and out of the internal storage as indicated by
the arrows of FIGURE 2. In general, the information that passes through the
Amvrd mmnc 2T a mamAmArmAAR S o

ucviCoo 1o ccouorlucu LIl LIl
corded on output devices is a copy of selected information that exists in

internal.storage. Information recorded in internal storage is retained there
h

oMo na
Ul (=]

W
0
'..._J

ed to replace it with other information. The arithmetic unit is used to perform

O

rdinary arithmetic, i.e., addition, subtraction, multiplication and division.

1
i+ 4
A

Knawineoe +the ranahilditdiac AfF +he masar yammidte anAd +he A iimAdamantal ~anepante
L\JLVWJ.LLa viic _u_blu WMidl Voo AL viic ulﬂd i “uiil vo Alina viic 4 dliviaiuc i vev _VIL_CHVD

of the high-level language, a programmer designs a set of instructions (expressed
1 1 language) that will when executed by the computer produce a

data
(called a program) are recorded on paper cards. These cards are inserted in

a card input device. Without loss of generality, one may assum= that, after
activating a few switches on the control panel of the computer, an equivalent
copy of the instructions that were recorded on cards, is recorded in internal
storage. The instructions are then executed and results produced accordingly.
Actually, the FORAST COMPILER which is temporarily recorded: in internal storage
activates the card input device, and translates the high-level language to the
primitive machine language. It is the primitive machine language corresponding
to the high-level language that is recorded in internal storage, 1In interpre-
ting and attempting to transform the high-level language, the compiler can and

some violations of grammatical errors

PP By - = 24 e A a
1 sSucn cases, it recoras

A e Ad o4
aoes aeuvecCu

o
[wN

pertinent information on the cutput device that identifies the particular

violation and does not permit the computer to attempt to execute the program.

2.) write a se
the plan;

3.) record the
4.) submit the
5.) obtain the

Although not explici

once a program has b

responding to & given problem, we:

ution and exhibit the plan in the form of

»
]
=
Q
%
1
Q
jog
[
s}
fea

[

t of instructions in the high-level language to execute

set of instructions and accompanying data on paper cards;

computer output and tabulate the results.

tly stated previausly, it is important to recognize that

een tried, tested and proved, it can be re-used for other

12

EXAMPIE 1.

To illustrate some of the general concepts stated thus far, and to

-

introduce some fundamentals of the language we consider next Example 1.

GI"LJJ.I: Xi P Yi 3 where i = 1’2,5, s 5.
i.e., a table of numerical values for
X X
1 1
30 4o
-8 6
REQUIRED: For each pair of values, X,, Yi; compute and record
7(X,,¥,) = X2 4+ Y2
i.e., we want to produce a table with entries
X Y 2(X,Y)
1 il 1.4k
50 Lo 50
-8 6 10

for an indefinite number of pairs, (X,Y).

13

1 1.

or this problem, we tacitiy assume that the given
numerical values of X and Y will be recorded in a "prescribed form" on paper

cards, one pair of wvalues on each card, and utilizing as many cards as are

At Fha Aot
v v

e ;£ +he nlete tahl £ + +1.4
necessary 1ior tie COmpi€ile Taonie Oi values. Aluhough this nov Tii€ mo

w

efficient method for recording the data, it is a practical assumption that is

readily fulfilled. One could assume two, three, or more pairs recorded on each

rdo hnvoavar fAr
rG, 1o (024

wever, f simplicity we assum= one pair per card.

Next, we make use of a fundamental characteristic of card-input devices.
Cards containing information to be used in the solution of a problem are
stacked in the input-hopper of the input-device with the card at the bottom of
the stack "engaged" under a "read" station. (See FIGURE 7.) When the input-
device is activated by the computer, the information punched in the card under
the "read" station is interpreted and the information transmitted to internal
storage. During the process of interpretation and transmission, the card auto-
matically moves to a storage bin and the "next" card in the stack moves under
the read station ready for the next activation of the input device. Hence,
cards that have been read accumulate in the storage bin and are not accessible
to the computer for re-reading unless manually re-inserted in the input-hopper.
recorded on them is recorded in internal storage indefinitely for as many
future references as desired. A similar sequence of card-processing applies
the automatic passage of cards from input-hopper

L) 1P

to "punch® station and then to & storage bin. To utilize this fundamental
sequence, we plan to have a pair of values read and substituted for X and Y,
t

Jua record the result

.er to evaluate the corresponding function

—————— H 15

on the card output device and then repeat the process using the nsxt pair, ete.
Hence our plan can be exhibited in the form of the simple Flow-Chart as shown

in FIGURE 3.

1k

-x

o
“1

START &

SUBSTITUTE a pair of
numerical values for X and Y;
i.e., record internally the
palr of numer1cal values that

>Correspond; to the numerical
values of X and Y that currently
exist internally, EVALUATE and

record internally

/] oy

7z =/ X%+ ¥°

that currently exist internally

"WORDY" CHART

START ¥
READ:

>4
-

CONCISE SYMBOLIC CHART

The "wordy" chart is intentionally "wordy" for the beginner. The concise
symbolic chart is generally used and implies all that is stated explicitly in

the "wordy" chart. Note the capitalized words: SUBSTITUTE and its equivalent,

ing to a given pair of values, the next processing desired is indicated by a
. . . . 1 1t .
line to the original START sequence which causes the "next’ pair to be pro-

cessed in the same manner as its predecessor. The process is to be continued

until the cards in the input-device are exhausted.

Next, we write instructions in the FORAST language to instruct the computer

to carry out the desired processes shown on the flow-chart. These instructions

1
are written on the standard CODING FORM shown in FIGURE L4,

wi id ii 22C

16

LT

FORAST CODING FCRM
PROBLEM

€905

CODER M.J.RomanellDATE 1 Jul 63 PAGE 1

ORDER CARD
LOCATION | TYPE FORMULAS STATEMENTS COMMENTS IDEN
1 67 10|11 76 T7 80
PROB Co06_ M.J.ROMANELLI 45107 EXAMPIE 1. 1

START READ(X)Y 2
Z = SQRT(X**2 + y*¥2) 3

PRINT(X)Y)Z % GOTO(START) L

END COTO(START) 5

FORAST INSTRUCTIONS TO CARRY OUT PLAN OF FIGURE 3.

FIGURE L.

AMIBR Form 2534-(R), Rev 28 Mar 63

-
-t
-
=g

XXX

000
12
e
v
1

v v
[

XXXX
0000

IRENH

At

VRV RVEY)
Truy

XXXX

l!!

v
[l

can then be submitted to the computer.

structions written on the Coding Form of FIGURE k. are shown in

vy v wwy

llf‘llll

|

I
| iARA]
qxx |y|xxpx|xxxxxxxxx
Oﬂoohooohoolhoolouonoooo

5 I 7 lllIllll!‘!lllslljll'lllmﬂﬂn '7“2‘772!
DA s Y
YYYRY

Yy

I‘
xquxxllglxxuxxXﬁxxxlxlx
losoaloosoloomolomolmocomoolmoo

l"" '1'"12'1!“!5“!11Ill“012|22?]24’5?6h"3[)“‘]1!3’}
Al =

X X XXX

‘ Ry
- ,‘ . '
| I

\ A A4
t

<

v
¥

«

o
l‘ VvV
1 .I [A

ARV

v
111

-t

! ! ¥ i ll! VY !!
lel;lxl xxxpxxx
oolohooghlonbolnoooohooo

lmnuﬁnmuwmmmMznunzu 0

XXX X

xxxxkl|x

20000
45|1|

||oohooohoonmnolblnomnoopooo
122458 7 ll! XQ n "‘11) 10 IS BrTen 20.21227)141251517 o

YYyvy

3333
4444

65675087

EREBEREE
eI it R i |

v

Lok
6666666 @Ct0

111

7
2
uiv e

NMa(J’.’(

hvv vavivlvwvlvhvvl

0060090

-”nuuxﬂul
D2

!11n||||111|

b

I

3333H333l3l333333ii3

4|44
Le4T4T M

44444444%44IM1
L5398 TN BAL N 5 5"4:
::::sq&zn.qq

[IR A R RRURY B SR SRV BV)

a4

ReiE24: 1745 45 =129 7 .'
55§ g
LA AV I

Ten

[M)

4
v

!
11
Ll

(-]

on

XX

Lm

UUOOMODGGUOOODOO

e xanen lFllvkv

YYYETRT X
4550331

6655%655%5"

|

| !
TYTVYYYYY:AYYY

Ja'lﬁﬂﬂr",”‘l“"”‘ 16
YYly .lv.vavJ.Y
kxxxxxxxxquxxxx
%ooohooomqoo

VU ‘Si!l »8 Jllll QY “'5 owe

!YYYHYYY

XXXXXXXX}XXX

GOOONOOOGOOG

BUBRN U

....

" ‘4*\7””40"{203“‘

-
AANIARAHARE

xVVthxxtxx '

A

1|1h|111|||n||

| ZZ’ZZ;|
|

aaassaassasJ
quﬂ

1444
oduvmﬁ & add AR
FL%&&&!;
SEAE IS AL

i1 B
l3 55 8l

|

ZZZ? 2222

313

.

-~

YYYYHYY“YYYY
Ixxxﬂxxxx

the Coding Form are punched on

The cards corresponding

YYYqYYYYrYYY
XXXXXXXX&XXXXXX XXXXXXXX:

XXXX

ByyyyyYYYY
AI'AA'\I\I\

444

IR Y

‘iiiiﬁiismus"s
2738 Y940 47 43 6. ' 48 7 ABEd 50 1 S2%3 14 3L SBIST N0 L9 ot €

XXX

to

S |
YYYY?YYYWYY

t
XXXXXXXXXXX

ﬂOUUbOOOOOUOQOO 000“000000000000%0000000

'3”-1-5-3.&3&41Sﬂ.-.lu&ﬂﬂ.d&uh.dh.:

BOOPOOODUOOOOOOBMBGU

vlﬂcs's*s 5‘55!&:75&"36\45 ilﬂﬂii‘i’ w

...._...L...L.......

)

00“00000000"'000000%00&

luﬂ“‘i“ﬂddﬁd a)..l;‘!\&s

.
vvrvvvvﬂvaerY

xxﬁxxxxxxx

‘b AHIAIMJM&-“L’

|
f
'
|

vldvvlvh vavvvvrvavvv

><

i
'
1
'
|

0000000000.0@000DIUOBOOﬂQOUGGDDUOOOUUOOO

19-1|11nun‘v TN AGIes A2 4344 45 36 47 RIS S) 1112 %0 9D 6,57 L0 99 6T 61 K2 83 64 65 66 €

1111]111111111111111

333333333343
A44444444444
""CJB’LS!.".‘

i7771777771777777777

: !:«r

XXXXXXXX(XXK

the in-

FIGURE 5.

: |
YWY!YYYYY“YYY

XXX AXXXX s £ XXX

nna!?nnnﬁnnn

XXYXXXXXﬁXXX

700“00ﬂ31000
9w nin ns<v ERT

N
I
|

YYYYrYYerYY

Il
XXX XXX XXX 'S £ XX

| 1
OOCG“EQODQUO

I TN A 10T e Mas

YYYJYYYYYYYYYYYY

|
XXXHXXXXﬁXXxVxxxWxxxxxxxXXXX}xxxxxxx
]
000 c]o 009 0 000 0eo 0‘0 009 0 0o Ulﬂ 0no 0 009 8 0 00

4505‘1&]!!505‘5 .aﬁ»S’&lewmuuwww TARI N 1,.:1 o .,:

Y

vvvvvvvﬂvv

S

YYXyyyyx
ni\nr\

GDOOU”"OWBUU

SRR u.‘<x:wnn

Illlllllllll

Y Y
nA

f
717777°77777

44444444 444

1’1133'55V

1bbbobbORLOD

77777117:777
i
|

FIGURE 5.

18

The instruction cards of FIGURE 5, together with a few data cards, (the
ars T e e - -\ - .
cards on which we assumed the X's and Y's would be recorded), are shown in

FPIGURE 6. These cards represent the complete package to be submitted to the

computer to obtain the desired solution.

- :) i ! . ! . I] + i] '] ' t
J ! | | i ! !
|YYYWYYYhYYY]YYYVYYYﬁlYYxYYthYthngYYYpY!thYﬂYYYYhYYY&YYYNYYYHYYYthvhwvvhvvv
i i i i ! § ; ' f i ' ' i i ! i
- g SR] : l | t ; . ; i] I '
YYYY1YYYPYYY|YYYHYYYYlexYYYFYYYgYYwiYvﬁvvaY7417vaYYYFYvaeryvvthYvwvayvvv
! 5 | L ! i h 1 P i i
= 1] ' l | . ; 1 | , i l : 1 i . ! 1) |
IYYYWYYYhYYYXYYYNYYYfYYYdYYYhTYYXYYYYYYTYYYYYYYdYYYYYYYﬁYYYYNYYYXiYYHYYYYYYYYYYY

| . . ‘ <
YYY'r_{YY‘;i'rYY'r‘.’YYY,‘.’YY'T:Y‘:’YYiYYYY‘.’YYYlYYYYYY’YY}YTYY!YYY\JYYY‘IYH1"1 YYYYYY H‘!‘ﬂ‘!“!“fIHYYY YYY

!

. l | . , . ’ \J {
TYYYﬁ%?1ﬁ¥¥¥¥¥¥¥h¥¥¥ﬁ7¥¥ﬁ;111¥¥¥;1!¥W¥¥z¥¥¥vf¥Y YYVYYVYYCYYY'Y*YgYYYdYYYYYYY“YYY
- | | ’]) ! ! '

LR R LV RY R VR Y]

S UV MRV SYUUR S FOR T N T T NSRRI B
IRRRARL Y LI RRARRAL AR ARRRRRR (AR AN AR N A S A L R R A R R AR (RS0 ARE AR LR TAE,

[1]
Fyy,ﬁ¥¥¥pYYYHY¥¥¥Y¥¥ﬁ¥¥¥h¥¥¥ﬁf¥¥H¥vvp7%77:vvﬁ¥vv
, B 1]
- ' S R | .
YO Y Y Y Y Y Y Y Y Y Y Y YT Y Y Y Y Y Y Y Y Y Y Y YY Y Y YY Y Y Y Y Y YY Y YYYY Y Y
) [N D R ! P R E e Y R
| |

' ; ! i ! ! I
YYRuYYYilyy 1|||YY|rYY(vaﬁvvvpvvvpvvvhvvvvvvvpvvavvvrvawvvvgvvvquvpvvv§Vvavvv
i] 1]
i . o i i i 1 t

o ' . !
! f ' |
vvvvavvvv!ervavvvxlvl JYthYYlYYY dYY\YYYYiY.J;YlYYIYYﬁYYYJiYYJYYYYYYYPYYYYYYY
| | ‘ i .
XXX X BB A AX XXX xBXB YRR R XBXBE XXX
; i
5

b3

XXX XXLOKX XX lxxxxxx%zzx;xxXﬁxxxxxx ,vxxgxxx
i i Lo ' 5 ! o -‘-
'UJ ‘JC"""E 7(3063:06000§0000 ,0000'93.0'0000 4

win'? Ilih)"uzn X671 W29 30 X8 2100 M DS w4 ‘auw«u LYR 1

)
Rf 1|11|1|1:t|11 1|1|1|x||||p|||h|||

= i e

- & W

-
=
-9
IS

0
s e mu AAELT AN
1

"]II"V‘II
zzzzzzzzzzzz

~ ERso

N
-
2
~y
'~y
~y
N
~
"~
\I
~
~
~3
a
o
~
"~
Land
~>
~
"~
~>

?77?17222227

N
~
[ond
2
~
~>
Land
~~
I~
s
)

]
N
N
S
N
N
and
~
N
)
g

........

<
[
[
@
w
w
w
e
oy
s
w
_
T
o
w
'y
an
[
[X}
I
w
-
w
w
3
o
P9

1

ul
‘a
Gﬂ
h
Cal
Cal
[
3 b S e L
Lo
cal
Cal
s
Lak
€A
(]
[y

I
rlssﬁlsaﬁsasﬁsasa33333333333ﬁ333
1 { H H

; I
4 444|44444444444|,44444444444.44444;4444414444444
[Pt witis -:. P G t,ivl-)4.4‘040‘444 o pu.o:ﬂ.ux:o J..ua AGGBTIUIOBB IS I T 1383 T 68V R TR T A T S S |
54554;:4JSMM,J450335 555555080 5555I555355:I5555al54055«43535555353355535555555
R) T b | r P
j a

- o plp e ovoale o o oo ap
5608568] 5555;£5u‘5u”-;uﬁ%uESESSESSEEb.\585&.55

i I
414444445 4'11,44~ls4444l44

g WD

u-ggo. -
u-y-.:h

52

o
o
an
o
<2

| !

IRREUEE RilRi 7777777777|117777[177777717]711 il?’7l?l77 11101 "7l'l7|l'l'l'l'l'l171111:717?'7717
: : {
8888/353% ! 888’1:8880803’8'3‘8883888888883888868338883n8?d'8 38833888388E33;%3883'3388
| ! i i i
9‘9“!-'3'3‘=!-i°r"~§'=3‘393395959 9%9%#‘3%9%%‘%%9*99:35‘35”5“95‘*333"";3'9“‘”"'“‘““9395"&939‘9999
120:’«}3.‘!'.‘& AN TN U Aﬂﬂnllnhl}‘”&- 7.3‘!9‘3‘\0 MQ“““‘QW?IZ.'\.HSLK SSRGSl b Bl A on'uismn’n.“-n‘snlﬁnnl
BRLESC Eac ar 6
FIGURE 6.

'.J
\O

Recall that we assumed the given input data, (the numerical values of the
X's and Y's), would be recorded on paper cards in a "prescribed form". The
FORAST programming language provides for instructing the computers to accept
data represented on cards in many forms. A few specific forms are considered
standard, (i.e., those forms that are most convenient for scientific calcu-
lations and used frequently), and only departures from standard forms must be
ed in a manner provided by the language. The prescribed form chosen
for this example is referred to as standard "floating-point” form. This form
is similar to that generally called scientific notation, where numerical values
are expressed in a two-part form; one part called the "coefficient", the other

is called the "exponent". For example, the quantity 72.45 can be expressed as:

7.245 x 10 or .72W5 x 10° or T245. x 10'2 , ete.

o
Rt

s generally cmitted and the two-part form used consists of the

(0]

signed coefficient and the signed exponent. The exponent is restricted to

integers. The computers represent numbers internally in a similar manner, using
binary notation instead of decimal. In ORDVAC, the base is 2, binary; in BRLESC,
the base is 16, sexadecimal. The use of other bases and forms is permissible and

means for transforming from one base or form to another base or form is provided.

For input data, some standard floating-point forms used are:

Coefficient Exponent
a.) Sign,8 decimal digits Sign, 2 decimal digits
b.) Sign,7 decimal digits Sign,2 decimal digits
and a decimal point
c.) Sign,11 decimal digits (no exponent)
a.) Sign,10 decimal digits (no exponent)
and a decimal point

20

In the forms where the decimal point of the coefficient is not specified,

1

(forms "a" and "e"), it is assumed to be before the first decimal digit

punched. In each of the above forms, 12 columns of a card are used. Other

T AT TV

variations of these forms are permitted; however, in EXAMPIE 1. we used form
a" for both input and output representations. As is conventional in mathe-

matical notation, the positive sign may be omitted.

To introduce some of the fundamental rules of the FORAST language, we
f

refer the reader to the standard codin

Observe the division of the form into four general headings, namely:
LOCATION, (1-6); ORDER TYPE, (7-10); FORMULA STATEMENTS, (11-76): and CARD

(J; ORDER TYPE, 10); FORMULA STATEMENTS (11-76); and
IDEN, {77-80). The numbers written here in parentheses, and written under
the general headings on the coding form correspond to the columns of the

paper cards on which the information will be recorded. The space allocated

r names

-~ FRRT P Sy P R .
O reier L0 sSTale -

ments and pertinent data. Columns (7-10), labelled ORDER TYPE, are reserved

ct

IOURY A labelled LGC .- S P
umris (1L-0), ladelied bﬂJ..LUl‘, 15 reservea 10

for classifying the information recorded in columns (11-76). Only a small

+
H)

for arbitrary identification of individual cards. Although not mandatory, the
cards are generally ordered in numerical order for easy reference so that if
and when the compiler detects a violation when it reads a card, the identifi-
cation recorded in columns (76-80) of the card is printed to identify the card

containing the violation.

M.n £3 ot ~Anrd ~AF Ao —nm o ot 4.2 4+~ LTn A
L€ 11050 Calud Ul cacCll proglrall bubuu.bbeu Lo une C

ch
recorded in columns (7-10). Columns (11-76) of this card may be used to record

a problem number, persons name, title of problem, etc. The information recorded

on thi Aawd So aluave rerardeld s +ha €
on 118 CarG 1s aiways Tecioraed as vne 1

U)

subsequent results which follow, if any!

[\Y]
=

o identify the beginning of a program, an arbitrary name composed of at
most 6 characters must be recorded in columns (1-6), i.e., opposite the first
statement to be executed. In the example, we chose the name, START. Note
that commencing in column 11 of this card we wrote READ(X)Y, the instruction
designed to start the processing of a data pair by copying in internal storage
the numerical values recorded on the first data card. Next, we wrote the
function to be evaluated. No doubt the beginner will note the difference in

the conventional mathematical notation, Z = X2 + Y and the cumbersome

notation Z = SQRT(X**2 + Y**2). Unfortunately, the former is not acceptable
to the input media. In contrast, the latter uses a serial arrangement of
acceptable symbols or their combinations. Subscripts, superscripts, exponents
or other conventional symbolism which is not included in the restricted set of
>ters acceptable by input media are denoted by special characters in the
restricted set or by combinations of them. For example, in place of the symbol
/r—- , we use SQRT () or ()**.5 enclosing the argument in parentheses.
. S

The latter evnress
ine 1atter eXxpress

on, as do the forms X*¥2 and

v e . 2 I N
Y**2, which correspond respectively to X and Y . The general form of ex-

ponentiation is
(E1)**(E2)

which represents the expression El raised to the E2 power. The equality
symbol, =, is used in a different sense from the customary mathematical meaning

in that even expressions such as
X=X+1 or U=2=Y + Z¥%2

are valid. The special meaning of equality is: EVALUATE the expression to the
right of the equality symbol, using values of the quantities that currently
exist in internal storage, then record the resulting value in internal storage
as the existing value of the function or variable whose name (or names) appear

to the left of the equality symbol. In the example, U =2 =Y + Z¥*¥2 the

22

Aamriitar w111
bumyuuc; Wil
existing value o
existing value o

prior to the reco

uvare the existing value of Z, add thi

o ra
[v B 4wl

and then record this result in internal storage as the
a

Z; the previous values of Z and U are erased just
f\

ine 4 of FIGURE 4 appear two distinct statements with the special
t

0 separate them. One may write many statements or symbols

on a given line in the space provided. Each line of the coding form is

punched on a single card. Three lines (or 3 cards) would have sufficed for

EXAMPLE 1. as illustrated below:

PROB C906 1
START READ(X)Y % Z = SQRT(X**2 + Y**2)% PRINT(X)Y)Z% GOTO(START) =2
END GOTO(START) 3

The rules for the use of

ko]

rded in the ORDER TYPE space. Thi

the FORAST program into primitive machine language.

of this card is not recorded in internal storage.

o the FORAST compiler the end of the

arenthesis will be explained later. The last card

r»d carves two
rad Ser S TUWC

el ~f
AULL UL

The equivalent

2.) The GOTO() statement recorded on this card directs the computer

to the first statement of the program to be executed. The first

statement to be executed need not follow the PROB
any statement in the program.
The GOTO(START) statement on line 2 is recorded in internal

the computer to process every data pair following the first

on line 3 directs the computer to commence the program with

card it mav be
card, 1t ma

) ~ J P

storage and directs
pair. The GOTO(START)

the reading of the

first data pair. It is not generally true that the processing of subsequent

vith the first instruction of every program.

23

INPUT
CARDS

CONTROL

!

CARD READER

(input device)

' 4

INTERNAL STORAGE

READ (X)Y%Z=SQRT (X**%2+7Y%*
¥ 2)4 PRINT(X)Y)Z%GO0TO (ST

ART) %

X

ARITHEHMETIC

FIGURE 7.

CUTPUT
CARDS

i

CARD PUNCH
(output device)

Illustrated in FIGURE 7 are the machine components used to obtain the
solution of our problem. Note that the cards shown in FIGURE 6 are first
inserted in the CARD READER, (input-device). The FORAST compiler causes the
five (5) program cards to be read and the information on them is recorded in
internal storage as illustrated. When the compiler recognizes the card with
END punched in columns 7-10; (the 5th card), it directs the control unit to
commence executing the instructions t
Note also that in addition to utilizing space for the instructions in internal
storage, space is also reserved in internal storage for the numerical values
of X, Y, and Z. Each time the computer carries out the instruction, READ(X)Y %,
the numerical values on the card at the read station are transmitted and re-

corded in internal storage, the card itself being moved to the storage bin.

Next, using the existing values of X and Y currently in internal storage, the

| G A N

V x° 2 . N
computer evaluates 2 =V X~ + Y and records the numerical value thus obtained

in internal storage. To carry out the next instruction, PRINT (X)Y)Z %, the
control unit activates the CARD PUNCH and records on a card the numerical values
of X, ¥, and Z that currently exist in internal storage. This completes the

d processing for a given data pair, (X,Y), and then the instruction
GOTO{START) directs the computer to READ the "next" data pair and process it
in the same manner as the previous pair. After all of the cards in the CARD
READER have been read and processed, the computer stops and one obtains the

results in the form of the punched cards from the bin of the card punch. A few

A tabulation of the FORAST program, the input data, and the results
obtained are shown in FIGURE 9.

N
\n

I

]
YYYYYYYYYRYYYYYYYY

XXXX

ﬁXX XXXXXX XXX

37 35 DD A0 4G a3 s s 4 gty s 4 ’!‘NSS‘H"!5!!“515““!6'-616-1&m"n'lM
.

4 e o aa!

8000000000 ﬂUJUOUUUﬁﬂﬁﬁﬁUU"mﬂ00””00%.!!'..0

YVYYYYYYHYYY'YYYYYYYW'YYNYYYFYYYYYYYHYYYVYYYhYYYYYYYHYYY
XXXXXXXLXXXXXXXXXXXXXXY!(Xxxkxxxkxxxmxxxvxvvxvx XYY YY
L
I

| | XXX- ' XXX XX
ﬂ"‘\IIIII T T i
U HHH ERRRE H Jgoce quuuuuu&uOuO 0000000000 U}
' ‘4‘5 eje l}l“llsll_"-.'l.!!.’.!'l'-".if H'IT?J’,\’J;'D":J"‘ 13301..4':)- u‘4 XN RRPET 9239‘02223?‘ ;.:}ﬁggs;gg:‘q..!!.l!’q
i1 rl'lTl{‘lll{llllillll'll|I.!||I§|||||||||||||||||||||||||‘|||||||||'||llllllllllllﬂlllu
i . |] 1

|YY1¥YYYPY1devvdyvvavYYYYYvavrvvvhvvvhva YY YA Y Y Y Yy Yy

I
YYYJYYYYtYYY“YYYYYYY

| I
XXXXXXXdXXX XXYXXXXXXXXHXXX&XXXWXXXXXXXXXXXXXX XXXX XXXXXXXPXXXXXVXXXXEV”XX! Y
' ' i | ! ‘ !
iiiiii%?ﬁﬁﬁﬁiiiiii%u'u;ﬁ..hiii%ﬁ‘ gonosG20N000 Cﬁﬂﬁ00uG36ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁwnvumiiiiiiﬁ
AT AR EIN R M PRS- FUE | I ETIDATEE T ~'v:s1-n4un a0 0 ey 53 81 3253 54 e 56 5 10 59 80l81 £2 5 KAEG 6 G B 70 11 2313 4y s .~
IREREH IPI‘ il I!llllllll |?|I|||W|llllllllllIlllllllﬂ!Illlllllllﬂlllllll"'l‘ﬂ. i
! i ! i ‘ . H ! G

i
!
J

1
1 H |
Y Y Y Y Yy Yy y v vy vy vy y vy vvYYVYYYYJYYYYYYVYVYvavvvwxvvvyYvwvxvhyvv
xvxxxx;xLxxx;xxVQxxx&xxx&xxxxxxx&xxxxxxxxxxxaxx xxxx XX XXX XXX Xy X xpx x xy xxxh!xx
: i ' l

! g
°°IIIIIII"““"9IIII“ R |
"1’1!‘ 'lill'lllllllllﬂll

1

__________ [} YRR

v| no
nnr"l)'!!!!!.ﬂvﬂﬂOOﬂ"UCMON‘M- 0"0000000000"‘00000“00- ...I."
RRRH

B PR TR SV O R R UGV R L L S UR SRR N 151‘65"7!‘!!“‘!!75)001“‘6!7“”K H ARSI I N A |

lllrlll|lllllllrll1llllrlllllllhlll RRIREERE
|

1YYYYYYYYYYYYYYY

n.

;

yyyvly I vyvyylvyvy

XRX MO N XY M XK XK
| {

i I
) f " n neigonogggorrasng F"PﬂﬂﬁﬁﬂﬁﬂﬂPﬂOOGﬂ”F'ﬂ""ﬂ"ﬂm Q
i ll!!.l. W n!lll..!!.o(‘u“ﬁ E?.?. 0 I R R R AR U ' TLE T ‘~‘.5|:.~5='5'--_vsu SIS tie O MmN n'u.«ls's.!)!ﬂe
tos PR LR LA YL SILY T E B IV . » - . . B 0
] RN ‘vll! llll»llll"ll! |||I;I!i|!||1lIlllllll'l'.!;llll"ﬂll'.lHllll‘Hil'llHl'
- - - - ' !

bzzﬂvz?7:72f722773;3%20"vzzzazzz:vv‘fzz?arzzbyzz
. i - ! : i |
1 N ' -

333157fj‘;’?‘733433??3323133333|ﬁ3333’3’*“33533?33 337"‘313339713333‘“"1‘3"’]
i .
) .

r.«a-r!‘.'«‘!nﬂ'ﬁﬂ'\'.'\‘\’vll'!_
. EFAEERAE AN AF SF A AF S AN AR SN

L4444 . ""4‘5-‘4"4444¢-,<-141li.‘4'14‘4‘444l~4@14444-’1’ ‘444 -!4;4444"444344‘1444,-1
e o g . acyort i, o ety e Bl g M Ux-'"'a‘ PO P KR g - '4!)" 206 T ES5(4 30 9’870;,4 %2
5.9 : '1‘-‘5555555"‘5":‘;'-‘5i5b.25:535555553‘55555" 3’"53"555555555555553555552}5345
’ ’ i | |] i 1

! L H ““____L_’__J_ T
§FRE6ACTE E| LEEAEEE6665 8 966563 Si‘ 5666 ' 666 A58 G BECSEREGED £566 Glﬁ 66 5 R6E6E666 Gib th b'b 6ob

:] i . i ’
1771171 I7l77777l77777""77lli ‘77]77777777-771777177777'7777777777717777‘7777{777l
: i

aeeoa&ssaesetaesé:ae»3eaﬁep3L5293assbase!easﬁaasaas=@aees!saasassaaa gs8lgaaale

| RN S IO IS B O SN

}:

: | TN
3999995??49-39:‘3939@9049 999“99&99999959999QSQPQQSS
PSR 36 Phii 1t tipas TNATUTSUNRIAT N ML THIKA L QU & & 0y

35lse°@553§99§wsssw9:swsss
TR TR L
FiR C".(, vaC aTn ¢

L RUR]] l?}ll’l"ﬂ?‘"i nno

A tabulation of the FORAST program, the input data, and the results are shown in
FIGURE 9. PROB

START

END
10000000
30000000

~80000000
75000000
-40000000

MAY.23,63
PROB €906

10000000
30000000
-80000000
75000000
-40000000

C906 M.J . ROMANELLI

READIX)Y

I=SQRT(Xea2+Ynn?2)
PRINT{X}Y)ZZGOTO(START)

GOTOISTART)

01 10000000 01
02 40000000 02
01 60000000 01
00-50000000~-01
01-50000000-01

BRLESC FORAST F62

1 10000000 1
2 40000000 2
l 60000000 1
~-50000000-01
1-50000000-01

MaJoROMANELLI

14142136
50000000
10000000
75166482
40003125

45107

45107

EXAMPLE 1.

EXAMPLE 1.

FIGURE 9.

JULY, 63 PAGE

0000001
0000002
0000003
0000004
0000005

EXAMPIE 2.

To illustrate a convenient means of identifying the "output" produced by
the computer, we consider an additional requirement in the problem of EXAMPLE 1.
In particular, we require that the letter X be printed (approximately centered)
above the columns corresponding to the num=rical values of X, and similarly the

letters Y and Z centered over the columng that correspond to their respective

numerical values.

To provide this facility, FORAST accepts a PRINT statement wherein we
enclose in "special quotes” the literal characters that are to be printed. The

"special quotes" are the less than and greater than symbols, < > . The PRINT

statement takes the form
PRINT < >

and all characters within the < and > symbols are recorded on the output card.

For our purpose we write:

PRINT <« X Y Z >

Since the numerical values of X, Y, and Z require 12 characters in the standard
form of output that we obtained, some spacing between the letters enclosed

within the < > is necessary if we desire that the letters be approximately

centered over their respective columns. Hence if we choose to have the letter
X over column 6, Y over column 18, and Z over column 30, we indicate this spac-

ing by writing
7~ 77\ 7\
PRINT < @ X Ql? Y-(119 Z>
where the circled quantities, 5 @ , and @ indicate to a key punch
operator and hence to the computer the number of "pblanks" between the literal

characters. (This is the only place in the FORAST language where "blank"

characters are not ignored! i.e., blank characters are ignored everywhere

except between the < and > symbols of PRINT statements). Knowing how to

achieve this convenient identification, our immediate problem now is to deter-

28

x L 2o ~D TTUTAMDT T

mine how to "fit" this requirement into the original program of EXAMPLE 1.
More specifically, if we recorded the above PRINT statement on a card, what

is its logical place in the original program? If we inserted it between

= =), s K =~ e o 3 A AaAmiit o
cards 3 and 4, i.e., in front of the card that instructs the computer to

PRINT the numerical values of X, Y, and Z, we would obtain the printing of

the literal letters X, ¥, and Z each time the PRINT < X Y Z > was
£

encountered. FORAST instructions are executed in sequence cne a

unless a specific instruction directs the computer to do otherwise. Since we

require the identification to be printed only once, a logical place for the

identifying PRINT statement is at the very baginning of the program. Con-

sequently the following program will produce the desired results.

PROB €906 M.J. ROMANEILI EXAMPIE 2. 1

ADDREQ PRINT < (5b) X (11D Y @ 7 > 1.1
NS N/

START READ(X)Y 2

7 = SQRT(X¥*2 + Y*¥2)
PRINT(X)Y)Z % GOTO(START)
END GOTO(ADDRER)

VoW

Note that card 5 differs from the original in that instead of directing the
computer to begin by reading a card at START, it directs the computer to begin
at ADDREQ where it is instfucted to print a card with the desired X Y 2
heading. The above program and the results produced are listed in FIGURE 10.

29

0%

PROB C906 M.J. ROMANELLI

ADDREQ
START

END
10000600
30000000

-80000000
75000000
~40000000

MAY.23,63

X
10000000
30000000

-80000000
75000000
-40000000

PRINTL X
READIX)Y

I=SQRT(X#n2+Y4u2)

PRINT(X)Y)ZZ GOTO{(START)

GOTO(ADDREQ)

01 10000000 01
02 40000000 02
01 60000000 01
00-50000000-01
01-50000000-01

BRLESC FORAST Fé62
PROB (906 M.J. ROMANELLI

Y
1 10000000 1
2 40000000 2
1 60000000 1
-50000000-01
1-50000000-01

z
14142136
50000000
10000000
75166482
40003125

EXAMPLE 2.

>

EXAMPLE 2.

FIGURE 10.

23 JULY,63 PAGE

00009001
0000002
0000003
0000004
0000005
0000006

NAMES AND OPERATIONS
EXAMPIE 1 & 2 illustrated the substitution, evaluation, internal-external
recording and controls required to obtain a high-speed digital computer solution
of a simple problem. Common to each of these processes is the fundamental re-
uirement for identifying particular quantities and operations of interest.
FORAST uses names constructed from a restricted set of symbolic characters.
In EXAMPIE 1, we used the symbolic names X and Y to identify variables, Z to

identify a particular function, SQRT another function, * and ** dencted parti-

and START to describe an instruection.

To avoid ambiguities in the definition of names, operations, and numerical

values, the 49 characters of the FORAST language are divided into two classes:

Class I .'"ABC: -2 012+ -9 38 characters
Class II +-*/()=9, 11 characters

The characters of Class II have special meanings and must not be used to define

non-indexed names of variables, functions, statements or other parameters.

+ is used to denote addition

subtraction

1
=
0]
o
0]
1%
o7}
(_'.
(¢]
o7}
]
ja]
(e]
(_'.
1]

is used to denote multiplication
division

is used to denote end of statement

- N 3
M
0
=
[2}
4]
Qs
(_f.
(o]
Q
1]
]
(o]
ct
D

(equality) evaluation

{l
'_J
n
=
n
D
%
(_'.
[@]
o8
)
]
(@]
(_’.
o)

>

¥ is used to denote exponentiation
< is used to denote "less than"

> is used to denocte "greater than"

() are used to denote multiplication, enclose arguments, indicate
order of operations, separate names, parameters, numerical values,

ot~
cuC.

31

%% is used to denote that the information on a card following the
%% is to be ignored by the computer.

Non-indexed symbolic names of variables, functions, statements and para-

meters may be constructed by combining characters of Class I under the follow-

ing restrictions:

1.

‘N

The leading character must not be zero and at least one character
must be other than a decimal digit.

Non-indexed names must not exceed 6 characters in length unless
those after the first 6 are not required for unique identification.

The special names such as SELF, SIN, COS, READ, PRINT, etc., have
been reserved and should not be used as arbitrary names. (A complete
list of reserved names is given on page Gg of [1.]

Names of indices should not exceed three characters in length, 4 are
permitted only if the rightmost 2 are decimal digits.

Despite the above restrictions, -considerable freedom in the choice of names is

permitted as illustrated in the examples given below:

X X! BOX 1. X3VEL. LAST
Y8 XDOT 1BOX 4 SINA
17A XBAR YACC Dz" TANX
1X START VELZ 8.9 BETA2
X1 SAM FOURTH 10.2.4 9GAMMA
X15A WORK Y" A.'B!? DELTAX
F300 N.Y. L.A. FIA. TEMPO
EVALYS EPS RHO ATPRES DENSTY
FOFX FOFY FOFZ FOFz" FINIS

Many problems require the processing of groups or arrays of numerical

data, particularly discrete functions, vectors, matrices, etc. Conventional

+ .
mavtnema

example, X,,

Q

ation by subscripts or indices. For

=024 ...m) ; Z., 2., Z,5 --. Z
10 “22 73

352

K

In the FORAST language, we use the special character, comma, to denote an

indexed name; i.e.,

X, 1is represented as 51
i

Y is represented as Y,d
Yy rep ;

Z, 1s represented as 72,K
k I

meanings which depend on the name before the comma and the existing value of

index whose symbolic name appears after the comma. Flexible and convenient

means for setting and manipulating index values is provided; however, it is

.
5

important to recognize that the internal form of representation for index

values differs from the floating-point representation discussed previously.

Index values are restricted to a limited range of integers and consequently

combining indeX values and floating-point values is not permissible. The

language does provide for transforming from one form to another. The con-
venient use of index names and means for establishing and generating desired
values for them will be illustrated in later examples. The index names were

0 indicate the general means of identification by

[l

introduced here briefly
symbolic name permitted in the FORAST language.

We introduce next the means of denoting the fundamental arithmetic
operations of addition, subtraction, multiplication and division, which are
denoted by the special characters, + - ¥ and / respectively. Hence, the sum,

, product and quotient of two quantities, A and B, are exXpressed as

A+ B
A-B
A*B
A/ B

The special symbol, *, is used to denote multiplication to distinguish the
product A times B from the single quantity, AB. Other means of denoting a

product are

(4)(B)
or A)(B)
or A)B
or A(B

or even the redundant symbol, *, is permitted in the above forms. In general,
parentheses may be used to denote multiplication or to group operaticns in any
desired sequence. In the absence of parentheses, particularly in ambiguous

expressions, priority rules govern the sequence of operations.

When the order of operations is not specified, the established priorities

1.) Single-valued functions of one argument;
2.) Exponentiation

3.) Multiplication and Division

L.) Addition and Subtraction

Next, we introduce the means to denote evaluation of the convenient

elementary functions such as sine, cosine, square root, etc. These functions

are denoted by special names as is conventional in mathematics. For example:

sine is denoted by SIN
cosine is denoted by COS

——

J is denocted by SQRT .

We classify these and similar functions as single-valued functions of a single-

argument. (This is not to be interpreted as a single-valued function of one
variable, on the contrary, the argument may be a function of many variables and
indeed many other functions. We emphasize the classification of this set of
convenient functions to distinguish them from another set which includes

functions of more than one argument).

3l

X=Y+2Z %W implies X =y + zw

since multiplication has priority over addition.

v _ v o . . Z

X=Y-2/W implies x=y-=

since division has pricrity over subtraction.
% - ; 2

X=Y+2 2 implies X =y +z

since exponentiation has priority over addition:

X = SIN(Y+Z)**3 implies % = sin5(y+z)

since single-valued functions have priority over

exponentiation.

35

s Ae T T

EXAMPLE 3.

example is given to illustrate the single-valued functions of single-

that are available in the FORAST programming language.

Numerical values of two variables, X and y. Assume that they
a

are recorded in
are recorded 1r

Mnched card
1 chea cara

N
1% pS ~ -

For simplicity, we will let x =1 and y = 2.

Compute the following functions; identify and record each

function on punched cards.

A=y R = arcsin x/5

B = sin x S = arcsin (-x)

C = sin xy T = tan xy

D = sin bx U = tan (-x)

E = sin 5x V = cot (y - x)

F = sin (-x) W = cot (-y)

G = cos X FX = sec x

H = cos (x + n) FY = csc y

I =fn(y + X) Fl = sign of x

J = loglo(y) F2 = sign of (-x)
K=e"t7Y F3 = sign of (y - y)
L = arctan (x - y) FL4 = sinh x

M = arctan (y) F5 = cosh x

N = arccot (-x) F6 = tanh x

0 = arccot (y) F7T = integer part of &
P = arccos (x/y) F8 = fractional part of A
Q = arccos (-x/y) F9 = sin%y+ cosey

36

AT

The program, input and output for this example are listed in FIGURE 12.

BEGIN
READ: PRINT: COMPUTE, IDENTIFY & PRINT
—_— X=.... A=y ; Print: SQRT(Y) =
¥y Y=.... B =sin x ; Print: SIN(X) =
C =sin xy ; Print: SINXY) =
Fg = sin2y + coszy 5 Print: CHECK =

|
1

FLOW CHART FOR EXAMPLE 3.

FIGURE 11.

W
—~

—— NN OMNOCC—~ANMIN IO~ TNO~OTO~NAOITNOM~OCNO

i ot] e e o o et = = VOO NN NN YO MY OO Y O A A A S

23 JULY,063 PAGE
>F9

CHECK

A @}
- AL N

0] A Z AV SN [l 0]

-— ZA0 Ll A ~U AT NHADOLU Vv

LW —_m,IY A AN] — > X>UA WWLULAAM

g AAAWL OAXAA " —~ HADAILUA IIAAA Zz
AD AL + — —~ U I~ A AAA "o~
AN AN D> o~ DN~ [} [TR] o d
" N —cZ | =~ NN nin —~o —~—Q.
o~ HATemma D> | >»>X | X)~ o~ — K e~ e~ L]
~ I DY) D o et s et ot it et D= MmO | 22 O e 2R
DTN QD b b ZZ e NN ZZHW | D2 v e (D o e e L = LN
X | X O QAILOOOO = | > | == Z 2T TTdO
e Z 2T e = OOV ONNE = e QO ONZNZ DA »

>P

EXAMPLE?S

VALUED FUNCTIONS OF ONE ARGUMENT

S Y Tttt) VGPCELLECCCAVTTESI[—OQ<I T Y %
A=t NN~V ADXK AL X LY

[Ve 1V,) NO =V I I <
I Z -

1 (
TT(<
V=V 2T Vi \AY4
\YAA4 AVV = Z =2V V VFEZVVVe—
Vi X YTRNKNR#R]T(T((&WNKWYTVN&
ViV ZZ 2 =~ ZZOA A A YT T Zrd X T Z Z =D
M et ik et T Pttt XA X I At Z et T2 Z et Xttt XX
At Z XL ~ZNX XYL AR~ LY== YO XXYQAQA +
KA Al X~e—~i—0 A~ ¥ ~>~RAaYoxXxza Xaaa o~
e x QA X F DA~~~ DL ana 0 — AN~
QAW A~ | ~ X ~N\HKN\X¥ ¥ RPN~~~ w O ~T
XI e~~~ 8 Frm X D>= | > | X | ~RA~INPNN A~ | mmnmrdI~DZO
RN V) D= D e s e e e e e e e | XK e e T
1> >t A M ot b T Z b NN T2 I | D=2 D ot ot et s o e L e AL DO
W XXX | XX > OXAILIOOOD =t =X | > | e ZZZTTT JOZ +C
wd XN P ot ot ot et o e e e e e b= O QI e e e I DD ZNZOOI =T 0
D= ZZ2ZZZNNAVAVIJIVVOVDIIVOZ T Nttt = DI T X N
ZQZP=trtrat et QOO0 DIXX XY XXX XLXLILILIO DN NNNNO= T L —DIN
st Lt NN YN AN QO d U T L LT <L T b (O H 00001 b
LI N I B e N XK= AT DO OO -
YA ODWIL D T=™MIY Y 200 TIXN=DD> UL Lhdd il dlu OO

Y)*'Z

> xe
z

01

Me Jo. ROMANELL I

Qo
z0
wo

PROB C£906
COMM

BEGIN
10000

*

EXAMPLE3

62

FORAST ¢
M. Jo ROMANELLI

BRLESC

PROB €906

MAY«Z3Nﬁ

—~_AOETNOMNOCC~NNAOINONOTOmNMENONSCOO~NMIN
OCODT OO QO el rd el el e eed ool el o el (N N N ONL NN N NN NN A A (A N 0O 1
OO0 OOOCTOOOOCOOOOOOOOOOOOOCCOOOZOOO
[elelololelololalclofolslolelolololalelelelelolelelelololelololal ool o]
CCOoOCOOoOOOOoOIOCCoOOOLOO000Q0000000200
CO00OOOCOOOCOOOOOOOOOCOOOOOOOOOOCOO
COOSTCOTOCOTIICCTOOOCOQOOCOOo0O00ID00000
o)
(@)
(@)
(@)
o
Qo
o
(o)
.dl —f 2 — o) g rd gl ol o)] g e — o —d)

SN FESEOSO=O=NARNNSNOOCSNO
AR TINNONNNOM A= OATO I~ OINNOO0 0O =0
; —“ONTI TP DINDMONSACTCOOTO

< . 4
NCONMOQOOMINO T ~AN-OFONOMROOONOrQ~NO
FITNOPITANDODOAN~AIO~FTFAONM-OOOTOCOoOONMNOND

S et P ODADON~=ONONNGT I =W NANSNACOD DT —~DOT O
TTONNIITIODDD—~DVDI0OON~NF NOODOCO—~NQVT —~CT
OO O =N QO LN LN et (OO P et P oI el O (N ot (] et O T ot el el meed O et et N e

U I T | i i i
LI T T T T T T T 1 L L L T O L I | (T L | 1

OYXYXXXXIXYYYYXYYYbXYXXYXYXXOXXXAAC
Owr =M TN | A || = NN X]| e | o e v e
ITN((((S+TOXXN(TXXX(((Y(CCN(“HHHETH
Xt Z 22 2O L A= L= O | = Z T T b= LINDZDZNZT IO
CH SNt it g et (e (B NA Z o O N Dot L T e D N) Dt DT O <

N NNHNYI VNOXILVVVVON=NN=~0OL N—=NANO=T X

Q+ b X O IO N Q w1 E L
> O> (S1 - 4- {18 I8 T 4
— ¥ o Xoxd
z <t aQx<
[] -1

59

FIGURE 12.

Restrictions on the single-valued functions of one argument illustrated

in EXAMPIE 3 are:

1.) BEvery argument is enclosed in parentheses, the closing right

parenthesis is optional.

Every argumesnt and every result is in floating-point form.

3.) The arguments of trigonometric functions and results of inverse

trigonometric functions are in radians.

L.) The results of ARCTAN and ARCSIN are in the interval

< Result < g

IR

5.) The results of ARCCOT and ARCCOS are in the interval

0 < Result < =

6.) The arguments may be functions of many variables and functions;

1~ Q-
nowever, Oniy

A

the sign of the resulting argument is considered in

the evaluation of the particular function.

Although not illustrated, names of variables, arguments and results may

be indexed.

Violations of restricted bounds of arguments will be detected and

recorded during the execution of the program.

Lo

EXAMPLE L.

LE 3. illustrated the available functions of one argument. Another

f LS PR]

set of convenient functlons are those which are functions of more than one
argument and often produce more than one result. Included in this set are
methods for interpolation, quadrature, matrix operations, solution of ordinary

3 3 3 > IS oy R e}
differential equations, etc. To instruct the compulers 1o evaluate functions

e
[o}
=]
]
s
=]
()]
d
o3
Qo
fol)
o]
—b
[
]
ot
(D
H
(D
[4)]
ot
;
= -
(1]
2

B e 1 =

represent the names or values of the arguments, parameters and the defining
names of the results. Many of the available functions in this set will be

illustrated in separate examples.

To introduce one of these functions, we will consider an extension of

EXAMPLE 1. Assume that the given pairs (x,y) represent the rectangular

ct

R ol oS s ate R Ve ==
LU prouducc a

coordinates of a point in a plane and that we wan

includes the corresponding polar coordinates of the point, i.e.,

GIVEN: X.5 ¥y oo i=1,2,35, ...
REQUIRED: Corresponding to each point, (x,y) determine, identify and

list in a table the polar coordinates p, and 6 (1ist & in

degrees).

2 2
+ yi

L)
e
I
<.
~

i

R

= arctan (yi/xi)

L1

Before constructing the flow-chart and writing the program which will
produce the desired solution we emphasize the distinction between the available

arctan function of one-argument illustrated in EXAMPLE 5, and the arctan

function of two-arguments to be used and illustrated in this example. The
distinction is that the arctan function of one-argument produces a result which

lies in quadrants I or IV. (Note 4. on page 38, -1 < Result < n). Since
2 2
the arctan function of two arguments take into account the signs of both

arguments, it produces a result which may be in quadrants I, IT, III or IV, i.e.,

-t < Result < =x

START READ PT
,
PRINT: column identification READ: J 2 2
P =YX 4y
X y RHO THETA 3 X Yy o
O; = arctan (y/x)
e’d = 57.295780 €
|
PRINT:
X h P &

FLOW CHART FOR EXAMPIE L.

FIGURE 13.

Lo

The program, input and output for this example are listed in FIGURE 1k.

PROB C906 M.J. RUMANELLI EXAMPLE 4.
COMM TRANSFORMATION OF RECTANGULAR TO POLAR COORDINATES
START PRINTC X RHO
READPT READ(X)Y%S RHO=SQRT(X#X+Y#Y)
ENTER(ARTAN)Y)X)TH
TH=57.295780%TH
PRINT(X)Y)RHO)THY GOTO(READPT)
END GOTO({START)
1C0000GO0 L1 10000000 01
30000000 02 40000000 02
-80000000 01 60000000 01
- 75000000 00-50000000-01
e -40000000 01-50000000-01
MAY.23,63 BRLESC FORAST F62
PROB C906 M.J. ROMANELLI EXAMPLE 4.
X Y RHO THETA
LO000000 1 10000000 1 14142136 1 45000000 2
30000000 2 40000000 2 50000000 2 53130103 2
-80000000 1 60000000 1 10000000 2 14313010 3
75000000 —-50000000-01 75166482 -38140749 1
-450000000 1-50000000-01 40003125 1-17928384 3

FIGURE 1k.

Z3 JULY,63 PAGE

0000001
0000002
0000003
0000004
0000005
0000006

EXAMPIE 5.

In the previous examples, the output results were recorded in standard
floating-point form. In this example we will illus
the tabular results in a form with the decimal point actually punched (and

printed) instead of the exponent. For example, instead of obtaining the

<

printed value for JE- as 14142136 1, we will obtain the printed value for
J as 1.414% . This example will illustrate a special case of the general
PRINT statement where a departure from standard form is desired and must bsz

specified accordingly.

To designate a non-standard form, the PRINT statement is written in the

form
PRINT-FORMAT (Name of specifying form) - ()) -+)} %

where the "Name of specifying form", enclosed in parenthesis after the word

FORMAT, identifies a quantity which explicitly defines forms and horizontal

To provide for arbitrary spacing of the output forms and for transformations
from internal to external forms the format word is composed of parenthesized

expressions of the form
(T - s -1L)

where T, S, and L are decimal digits with defined meanings:

T generally specifies a type of transformation, a repetition of a

previous format, spacing of quantities, end of format, etec. ;

of a decimal point;

wn
m
[13
o]
[¢)
H
W)
]
)__J
~
w
fo}
D
[¢]
H
th
..J
W
v
[4h]
¢p]
«
o)
[}
[
@]
H
H
(]
=
W
t
o
<
3
[}
@]
Q
4]
ot
}._‘
(@]
ja}

L generally specifies the length of a field, i.e., the number of

columns or characters to be used in representing a given form.

&
I

m.

The parenthesized expressions may contain all three of the above descriptors,

(T -s -1L)
or only two descriptors, (T - L)

or only one descriptor , (T)

_____ DMOAT =

Similar expressions may be constructed for use with the general READ statement.
The permissible values of T and their corresponding meanings are given in [l] .

Only a few of the most frequently used T's will be illustrated here.

In EXAMPIE kL. the entries in the output table were expressed in standard
floating-point form; i.e., coefficients with corresponding exponents. To
depart from the standard form and obtain numerical values with decimal points
printed instead of exponents, we will specify (using a format word) the parti-
cular transformations desired, the relative location of the decimal-point, the
number of columns to be used for each quantity and the spacing between indivi-
dual quantitie In the standard form we used 12 columns for each quantity and

provided for no spacing between them.

o

Assume that we want the following format for the table corresponding to

the output of EXAMPIE UL,

X Y RHO THETA
+ DDD.DDD + DDD.DDD + DDDD.DD + DDD.

" " 1 1"
" " " "

" " " "

where the D's represent decimal digits. That is, we will specify a total of
8 characters for each quantity and 4 blank spaces between each quantity. Note
that in the total length, 8, we include the algebraic sign and decimal point
n the count. (We chose four spaces between quantities since the column head-

ings,; X, Y, RHO and THETA were approximately centered over 12 column entries;

hence, with the choice of 8 characters for each quantity and 4 spaces between
quantities, we will not have to alter the spacing of the characters of the

column headings).

To specify this format we construct a format word which we arbitrarily

Jlabel SEEI.

LOC 0.T. FORMULAS, STATEMENTS, COMMENTS IDEN.
1 6 7 10 11 77-80
SEE1. FORM (3-2)12-3-8)3-4)12-3-8)3-4)12-4-8)3-4)12-3-8)2 T.1

LOCATION columns and the word FORM in columns T-10 of the coding sheet. The

parenthesized expressions are written in columns 11-76.

The PRINT Statement that refers to this format word is written in the
f

following form:

PRINT-FORMAT(SEE1l.) - (X)Y)RHO)T % 7'

The expressions (3-L) in the format word, SEEl., correspond to T = 3 which
denotes that a spacing of L columns is desired. (Note that we begin with 2
spaces before the first quantity, X, and denoted spacings of 4 thereafter).
The expression (12-3-8) corresponds to T = 12

S=35

L=28

and represents the form for the quantity, X.

T = 12 denotes that the quantity exists internally as a floating-point
number and the output form desired is a "fixed" form with the
"a -1 - H o a e oy A . . a n 1 e ma A Y
fixed” decimal-point location specified by the corresponding o.

S = 3 denotes that the "fixed" decimal-point is tc be recorded after

the 3 digits that follow the algebraic sign.

L =8 denotes that a total of 8 columns (or characters) are to be used

for the quantity.

Note the identical forms for the quantities X, Y, and THETA and the decimal-
point after 4 digits in the representation for RHO. The 2 after the last
parenthesized expression corresponds to T = 2 and denotes the end of the

format word.

To obtain the desired results, we will replace Card 7 of EXAMPIE 4. with

T - v

the card identified as T' above, (i.e., the PRINT Statement that refers to the
specified format), and add the card identified as T.l1l that defines the speci-

fied format. The program, input and output are listed in FIGURE 15.

£
|

81

PROB

START
REALPT

END
10000000
30000000

-80000000
75000000
-40000000

MAY.23,63
PROB

X
1.000
30.000
- 8.000
« 750
- 4.000

L9306 M.J.ROMANELLI
COMM TRANSFORMATION OF RECTANGUILAR TO POLAR COORDINATES
THETA> 3

PRINTKL X

Y

READ{X)Y% RHO=SQRT{X®#X+Y#xY)
JYIX)TH

ENTER{ARTAN

TH=57.295780#%TH
PRINT-FORMAT(SEELl.}=(X}Y)RHO)THIZ GOTO{READPT)®
SEEl. FORMI(3-2}12-3-8})3-4)12-3-8)3-4)12~-4~-8)3-4})12-3-8}2

GOTO(START)

0Ol 10000000 01
02 40000000 02
01 60000000 01
00-50000000-01
01-50000000-01
BRLESC FORAST Fé62
C906 M.J.ROMANELLI 44107
Y RHO
1.000 l.41
40.000 50.00
6.000 10.00
= «050 « 75
= .050 4.00

49107

EXAMPLE 5

RHO

EXAMPLE 5

THETA
45.000
53.130
143.130
3.81¢4

-179.284

FIGURE 15.

23 JULY,63 PAGE

0000001

Tom A3 42 4o~ 1 3
In addition to accepting FORMULA statements which involve a

subtraction, multiplication, division, exponentiation and many single-valued

functions of one-argument, FORAST also accepts eleven English word statements

and twenty-two special English words. The latter
types" and are labelled "ORDER TYPE" over columns
coding form. Only 11 of the 22 permissible order

this report. Included in the eleven English word

of more than one argument.

We have in the previous examples illustrated

are called "pseudo order-

T through 10 of the standard
types will be illustrated in
statements is the general

. .
approximately forty functions

special cases

the above categories. Each example included at least one English word state-

ment and at least one single-valued function of one argument. The READ, PRINT,

GOTC and ENTER statements illustrated 4 of the 11 English word s

PROB and END, (which are required in every problem), illustrated two of the

special O.T. English words. Listed below are the

1]l English word statements

and the 11 order-types to be illustrated in this report.
ENGLISH WORD STATEMENTS SPECIAL ENGLISH WORDS (0.7T.)
GOTO PROB (Problem
SET END
SETEA DATE
INC coMM (Comment)
COUNT CONT (Continue)
IF FORM (Format)
CLEAR LIST (Listing)
MOVE BLOC
ENTER SYN (Synonym)
READ, PRINT (PUNCH) DEC (Decimal)
HALT DEC = (Decimal Equality)

and are transformed to computer instructions that will be executed during the

k9

.-

-~ X e ol
lie nvo

computer instructions, the words themselves may only appear in columns

through 10. (Note

an
i1l

as in the previous

ations illustrated

Many problems

special English words are not transformed i
T

that none of these names exceeds four characters). Rather

in their full generality, we
examples to introduce a few in each example, with va

in succeeding examples.

require definitions of functions, or more generally, many

problems require control of processes which are based on conditional relation-

ships.

X

We assume

W Qoo wut vl

£(X) is defined accordingly.

follows:

———->|x>1.5?N° £(X) = A + BX + CX°
[Yes
DEF2
I f(X) = D + EX
L
WORK

We have arbitrarily labelled one of

~ L . B - N 2 . . P : ~ L
Iunction 1s evaluated) The computer 1S to continue operatlons at a place calleaq

WORK.

For example, it may be necessary to evaluate

2

Y ™ + Cl\.

4y

H

A
P2

+
o

[

(
\

(

) if X < 1.5

&

D +

X) it X > 1.5

may take on values in either range but as stated above

Schematically, the above may be illustrated as

the definitions DEF2 and indicated that

definition is applied (i.e., after the appropriate

o

To instruct the computer in the FORAST language to carry out the above

50

LOC. 0.T. FORMULAS, STATEMENTS, COMMENTS

IF{X >1.5)GOTO(DEF2)% FX = A + X(B + C * X)% GOTO(WORK)
DEF2 FX =D + E * X
WORK

The above is an illustration of a simple conditional statement. It has the

form

IF (a specified condition is satisfied) GOTO(someplace)%

As indicated in the form, if the specified condition is satisfied the computer

is directed to GOTO the someplace denoted for subsequent instructions, other-
wise the computer will execute the statement immediately following the con-
ditional statement. It is to be emphasized that the above is an illustration
of a simple conditional statement, more general compounc forms are permissible.
The conditional exXpressions may contain <, > , and equality relations whose
terms involve the arithmetic operations and single-valued functions of one
argument. Indeed a single conditional statement may contain many conditional
expressions separated by the logical operations AND or OR and each expression
may be prefixed with ABS, NOT, INT, etc., where: ABS denotes absolute value;
NOT denotes negation of the parenthesized relation, INT denotes that the
guantities involved in the relation are integers in integer form, (not fioating-
point form). In the following example, we will illustrate the simple form of

a conditional statement.

GIVEN:

EXAMPIE 6.

A, B and N recorded in standard floating-point form in the
first three fields of a punched card; (Assume several such

cards.)

f(X) =sinX ; H=B -A

Use the trapezoidal rule to obtain an approximation for the

definite integral

I =)(B £(X)ax
A

J

(f(X)ax = I
“A
I-H I—ﬁi)_ + £(A+H) + £(A+2H) + --- + £(B-E) + f(};)
I 2

—

Print and identify: A; B; N and I

Note that the trapezoidal rule requires that the function
(integrand) be evaluated at (N+l1) discrete values of X,
" .

alues (A and B) are weighted 1/2, the interior

values have unit weight.

To construct a flow chart that outlines a plan to obtain the desired

solution we begin

by denoting that we want the computer to read the card that

contains the pertinent values A, B and N. Recall that once they have been

read, they are recorded internally for as many future references as desired.

52

Hence to indicate that we want to begin by having the computer read a card,

we write

REGTN

5] READ: | 3
A,B,N

Next, we observe by studying the definition of the trapezoidal rule that we

need the value H for two purposes:

l.) it is needed as a factor to obtain the final result after the

weighted integrand values are summed;

2.) it is needed to construct the discrete interior values of X, i.e.,

A+ H, A+ 2H, A+ 3H, etc.

Hence, since we need H for the two purposes given above we append to the chart

a box indicating the desired definition and evaluation of H.

Next, noting that the definition requires weights of 1/2 on the "end" terms
) =3 Y / >
we can dispose of these by instructing the computer to evaluate the following

function

I =1/2(sin A + sin B)
We indicate this on the chart accordingly

MLV TAT

DOLULN

5| REiD; ; S H=B-4A T =1/2(£(a) + £(B)) {—=>

U1
N

Now note that the remaining required arguments, A + H, A + 2H, etc., can be
obtained in general by adding H to the previous argument. If we let X
be an existing argument, the next argument can be obtained by adding H to X.

Symbolically we can write this as

where it is understood that the X on the right of the equality represents
an existing value which will be used to generate a "new" existing value.
Hence we have generalized, in that anytime we want the computer to generate
a new argument, we need only direct it to the generalized expression. Note
also that each of these arguments will undergo "similar treatment", i.e.,
each is the argument for the function, sine. Hence we can generalize a two

step process and write it in the form

X=X+H% I =1 + SIN(X)

If we let X take on the initial wvalue of A and direct the computer to

the above two step process, it (the computer) would in the first step evaluat

@

the function for existing values of X and H which result in a wvalue of

X = A + H. In the next step, the computer would add the sin(A + H) to the

existing value of I. Hence, after the first execution of the two step process,
I would then represent the sum of three terms of the bracket [], namely the
first, second and last terms. To schematically illustrate the above, we augment

the flow chart as fellows:

BEGIN
READ: H =B = A I = 1/2(r(A) + £(B)) X =A
A,B,N
NXTERM
r& =X+ H
II: +SlnX

Ul
=

. .

labelled the generalized definition of arguments and the
summing of the general term, NXTERM. We will want to make reference to this
process and direct the machine to carry it out as many times as required.

+.

we can apply a simple conditional statement.

If one refers to the definition of the Trapezoidal Rule, it will be
noted that the "last term" we want the computer to add to the existing I is

(B - H), i.e., sin (B - H), (since we have already accounted for the term

)

(B))
5 .

a term to the existing I, whether the corresponding argument was equal to

Hence we need only instruct the computer to determine, after adding

B - H. If indeed X = B - H, all of the required terms have been evaluated
and summed; otherwise, we can instruct the computer to "go back" to evaluate

and add the next term to t

he existing I. Schematically this condition can be

illustrated as follows:

/ e
NXTERM
X=X+ H
I =TI+ sinX

No

4

es

g conditional statement in the FORAST language would be written

IF(X = B - H)GOTO(FINISH)% GOTO(NXTERM)

however, since the computers use a finite number of places in the calculations

the conditional statement written above may not be adequate for all values of

25

A =0

B =

N =23 5
then, H = 1/5 and the equivalent internal representation = .333--:-3%;
similarly, B - H = 2/3 and the equivalent internal representation = .666---7

(The internal representations result from conventional rounding and truncation
procedures). The X argument, "corresponding" to B - H, generated by the speci-
would be A + H+ H = .666:++6 ! Note the "6" in the least

significant digit. Hence this value is not equal to the .666---7, i.e.,

6666 £ .666°++T7. In conditional expressions, equality relations are not
ied unless the resulting numerical values on both sides of the equality
have identical representations. Hence, we should relax the stringent equality

condition and ask if X differs from B - H by a "tolerable" amount, say ¢, i.e.,

X - (B-H)| < ¢

If we choose € = 151 , we will provide for a maximum tolerable error. We

express this conditional statement in the following form:

IF-ABS(X-(B-H) < H/2)GOTO(FINISH)% GOTO(NXTERM)%

When

\BS precedes a conditicnal expression, the computers first evaluate both

sides of the conditional expression, then take the absolute values of both
sides before checking to see if the relation is satisfied. In essence, the

above statement corresponds mathematically to

. 1H P . .)
JE#-go o finish, otherwise go to the computation of

=
jos}
L]
/

the next term. At the location called FINISH, we want the computer to multiply

r

a
The complete tlow-chart is shown in FIGURE 16.

56

alue of I by H to complete the definition of the trapezoidal rule.

READ: Slg - BoAl Sl _Liea) + £(8) |——= x = a
L <
A,B,N
NXTERM
X=X+H
I =1+ sin(X)
No ;
Ro by - (me)| < L
Yes
FINISH
PRINT & IDENTIFY I=H

FLOW CHART FOR EXAMPIE 6, (TRAPEZOIDAL RULE).

FIGURE 16.

The program, input and output for EXAMPLE 6 are listed in FIGURE 17.

o7

i
o

B

PRQOB L9006

EGIN

NXTERM

[

A
A
A

Il SH
END
000000UO
00000000
00000000
00000000
00000000
006000000
00000000

X=X+H%
I=H=[%

Meda

GOTU{BEGIN)

00
00
00
00
0u
00
00

MAY.23+463
PROB C906

00000¢00
00000000
00000000
00000000
00000000
00000000
00000000

BRLESC

15707930
15707930
15707930
15707930
15707930
15707930
15707930

Medeo

(o= o< B v B o <BN o * 2N » c Bl o
b

ROMANELLI

PRINTCA

01
01
ol
01
oL
ol
ok

= >A<C B

25000000
50000000
10000000
20000000
30000000
40000000
0000000

FORAST Fo62

ROMANELLI

15707930
L5707930
15707930
15707930
15707930
15707930

15707930

45107
REAU(AIBINZ H=({B-A)/NE I=.5(SINCA)+SIN[B)) & X=A

[=1+S5IN{X)E IF-ABS{X-B+H<H/2)GOTO{FINISH)Z GUTO(NXTERM)
>1% GUTUI(BEGIN)

45107

P pme gt s el pme e

g2
02
03
03
013
03
03

>B<

Z Z2 2 2 2 2 Z

EXAMPLE

N = >NKL

EXAMPLE

25000000
50000000
10000000
20000000
30000000
40000000
50000000

FIGURE 17.

6.

I

6.

W oW W oW e NN

L L R T]

Laa

23 JULY,03 PAGE

99966767
99991443
99997611
99999153
99999439
99999539
99999585

0000001
0000002
0000G03
0000004
0000005
0000006
0000007

m tdentifuv +h 4+t T4 . A .
To identify the cutput quantities, we have used a variation of the

general PRINT statement. The statement

PRT <
4+ ~

PASSL NN

b=b> A <bb

~ ~

to

b=b> B < bbNb=b> N <bbIb=b> I %

ia

instructs the computer to PRINT{PUNCH) the name of the quantity, an equality
symbol, followed by the corresponding numerical value of the quantity. (The
lower case D's merely serve to indicate blanks and are used to obtain con-
venient spacing between symbols, numerical wvalues, etc.). Since all characters
specified between < and > in PRINT statements are printed, the above state-

ment provides for output in the form

Observe in FIGURE 17 that the numerical values are represented in standard
floating-point form since we did not specify any format to depart from the

standard representation.

29

To illustrate a concept that is applicable in many problems we will write

another program to obtain a solution to the problem of EXAMPLE 6. The concept

=
5
(0]
%
e
[
]

to be illustrated is one in whic "vary" the "exit" of a general

function evaluation so that we will direct the computer to various destinations

in order to weight (or in general utllize) the evaluated function in accordance
with given definitions. Recall that the definition of the trapezoidal rule
[() ' £(B)
I=H | 5 + f(A+H) + £(A+2H) + -+ + > |
L

requires the end terms be weighted by 1/2, and the interior terms require
weights of unity. In EXAMPLE 6, we disposed of the end terms by treating them
separately; i.e., we explicitly defined them and constructed general definitions
for the arguments and functional values corresponding to the interior terms.

T -~ 1.2 — = i . -
In this ex: pie we

AL =27 o PRS- 1
ugde ait gu.mer b arna

terms in general definitions.
Although the generalizations are relatively simple for this example, the con-

cept is most advantageous when general definitions are complicated and mere

Consider the following generalization:

N B0 9 EE IO (we’

on a prescribed value. The function is then evaluated and recorded as per

definition and the computer then goes to "someplace"” for subsequent instruct-

T a4+ 3 + s .
In addition to specifying the

"~

FAar whieh
1O wilalrl uu

r
H
3

I Aol al11a 4
ER V) lens n AA= S BV iy L0
required, we can specify the "someplace™ for subsequent instructions! That

is, we can let "someplace" take on a specific name prior to entering EVFN.

[ON
(@]

For example, suppose:
First: Iet X =A

Iet "someplace" = Place 1

Go to evaluate function

This is appended to the above generalization and illustrated schematically

below

! GO TO

= o -

11
..-—————ia\\bomepLace‘ //

o
H
>

g
1l

o
(@]
IS
¢
el
[us]
o8]
Q
D
1]
av]
]
3]
«Q
(18
[

When the computer "arrives" at Place 1, (since someplace has existing value
Place 1), f(X) has been evaluated for X = A and hence is available for what-

ever treatment is desired. Suppose then at

PIACE 1 : Form I = £(X)/2
Let "Someplace" = Place 2

Go to generate next X
where at

NEXTX : Form X =X+ H

Go to evaluate function
The flow-chart is augmented to reflect the above as follows:
FIRST EVFN

;(GO TO
——t X =A f(X) E R nsomeplaceu)
N .

Someplace = Place 1

PIACE 1
I = f(X)2

Someplace = Place 2

Eanatanihvd
WNOLAL

& N
X=X+H

61

Place 2, hence at Place 2, f(
t treatment. Now, at Place 2, "subsequent" treatment depends on whether

as just been evaluated for X = B, (for if it has we want to apply weight

~ I Y . o o e\ r
1/2, otherwise weight unity!). Hence at

PLACE 2. Ir |X - B < J%I-I- go to finish ;

otherwise, form I=1I+7(X)
Go to next X .

(Note that "someplace" retains the undisturbed existing value, (Place 2).
When the computer "arrives" at finish, the existing value of I represents the
sum of the first N terms. Now we need only add 1/2 of the existing f(X) = r(B)
to I and multiply by H to obtain the desired solution. Hence at

FINTSH: I=H(I+fX)/2)

The complete flow-chart which includes the above is shown in FIGURE 18, the

corresponding program and results are shown in FIGURE 19.

62

BEGIN
READ:
A,B,N
r 3
H = (B-A)/N
X =A
SMPL = Place 1
~J
EVFN L
NEXTX
X=X+H £(X) = sin(X)
o
PLACE 1|
I=r(X)/2
la— —
SMPL = Place 2
- ; |
I=1+7f(X) . |x-B| < igi g
——

Yes

FLOW CHART FOR EXAMPIE 7.

I = H(I+r(X)/2

"6T FUNDTA

L000000 98966666 I ¢ 00000006 N T 0¢6l0L6T = § 00000000 = V
9000000 6ES566666 I €& 0000000% N T 0e6l0L65T = d 00000000 = V
5000000 6EY66666 I ¢ 0000000¢ N T 0e6l0L6T = 0 000"0000 = V
000000 LG166E666 I ¢« 00000007 N T 0t6l0LeT =4 0nooonno = v
£000000 11946666 I & 00000001 N T 0e6lL0L6T = 1 00000000 = V¥
000000 tHy16666 I ¢ 000000059 N T 0Qe6l0l6T = 8§ 00000000 =V
1000000 L9L99666 I 2 000000%2 N T 0t6L0L¢1 = 0 00000000 = V¥
» L 3TdWVX3 LOTSY TIIINVAOY °Ir°*W 906D S0¥d
294 LSVY04 ISINUH ¢94€2 AV
£0 000000046 10 0t6l0OLST 00 00000000
¢0 0000000% 1O 0e6L0L26T 00 00000000
€0 0000000t 10 0k6L0L4T 00 00000000
£t0 00000002 10 0&£6L0LST 00 00000000
€0 00000001 TO 0Ok6L0LGT 00 00000000
20 0000000% 1O 0E6LO0LST OO0 00000000
Z0 00000062 TO 0&6L0.GT 0O 00000000
6 (NTD3G)04109 QN3
155 (NI938)0109 %1< =1 ODN<C = N D>8< = g >v< = V>IN
L Y(Z2/XHd+T)H=T HSTIMT 4
9 (X1X3AN)OL09 IX4+1=1 Z(HSINIL)I0LO0D(2/H>E-X)SAV-d] 232V d
] (NAAII0L0D FHHX=X X 1X3AN
Y (Z232vId=1dWS 135S *2/%xd =1 132v1d
€ (TdWS*)10L09 T(XINTIS=XJ N4AZ
l (13IVId=TdWS) LIS V=X ZN/(V-9)=H EN(S(V)IQVvIH NTO39
1 L 3VdWVX3 L01S% TTTINVWOU® MW 9062 HOXNd

1 J9yd €9*AINT €2

We have in our previous examples made direct references by identifyin
quantities by names, i.e., we constructed symbolic names of variables, functions,
statements, etc. It is important to distinguish between "names" of quantities

and the quantities themselves. If for example,

X =1.3
X =1.3
Y =172
and we yriteo
Al WO W1l L UuUCT
zZ =X +YX
Z, X and Y are names, whereas T73.3, 1.3 and T2 are the quantities or one may

that the operations are to be performed on the numerical values and not their
names. As We shall illustrate shortly, in some statements it is the name and
not the numerical value that is inferred. A trivial example is the statement,

comn! vt)
GULO\ BEGLIN)

. In 5‘:11‘:1"&1, one
name BEGIN, (we shall leave such interpretations to the professional pro-

grammer!).

In this example we introduce the SET statement which illustrates a case
where the name and not the value is inferred. SET statements are generally of
4+ 1. £

1

vl orm

SET(A = B)

A is generally the symbolic name of an index;

is either a symbolic name or an explicit integer.

If B is a symbolic name, then A takes on a value that is the name B,

If B is an explicit integer, then A takes on the value that is the

explicit integer.

65

T, +ha Ya "4y s s
Hence, the "value that A takes on depends on whether B is a symbolic

name or whether B is an explicit integer.

EXAMPLES:
SET(A = SAM) , then the existing value of A is SAM.
SET(A = 4) , then the existing value of A is L,

Recall that in the previous discussion of general names, a name that contains
the special character comma is an indexed name and indexed names
the existing "value" of the index. For example, X1,I is an indexed name.
We call X1 the base name and I an index name.

If I has existing value 2, then X1,I re

o k3
=
[#
Ul
0]
3
ct
4]
ct
oy
(D
)
5
(@
&
N

Similarly, the name ,J 1is an indexed nam
If J has existing value PETE, then ,J represents the name PETE or we may say
that the "value" of ,J is PETE.

Hence, indices may take on two types of values:

a.) the value of an index may be a name * ;

b.) the value of an index may be an integer.
(In EXAMPIE 8 we will illustrate an example where the value of an index is an

integer).

In the generalization

EVEN S
GO TO
—_—t f(X) = ... "Someplace"
e e———
to let "someplace" = Place 1 prior to entering the evaluation of the function

* In general, an index can only take on integer values since all names are
automatically transformed to unique integers during the transformation from
the FORAST language to the primitive machine language.

66

SET(SMPL. = PLACE 1).
Then following the definition of f(X) we write
GOTO(,SMPL)

Hence, after evaluation of f(A), the existing value of

SMPL is PLACE 1
P 4Ty +la mmrrnnaad mna emmn dn DTAMT 71 Pce ~naleamrimn B I A T NPT QL2
Coullscyuelivey Ull coldlipurernl gucs LU Niauh L 11U bubsocCyucllLv LIS LLUCULOIS . olilil =

e
larly at PLACE 1, we defined

I = £f(X)/2 and followed this definition with
SET(SMPL, = PLACE 2)

+limvmntcsr AcFaoalT 3 At e 1l At ot Yt xralysra A COMDT ae DTAMT D |3 1) PRSI IS N 2 R
uuv:J.cuy Colalblliollllly Ul CcAloUll valut Ul ol Lo ao rruniviy . .Lll].Uu.E,llUu.b vlle
remainder of the computation, for the existing A, B and N, SMPL retains its
value of PLACE 2 so that all exits from the evaluation of the function are
A3 rarntar +~ PT.AMR D
L% O B R S A S v PERE SV LWH A [y

67

EXAMPLE 8.

This example illustrates a convenient use of an index which takes on
prescribed integer values. We will also introduce a COUNT statement, a
BLOC statement, anothar form of the general READ statement and a GOTO(next

problem) statement.

GIVEN:
Xi recorded on cards in standard form, six per card, i = 1,2,...,100
REQUIRED:
100
S = ; X, ; Print S = =cmecceceew--=-=«- in standard form
/ i
i=1
START PARSUM
READ: is= > Si*l = S1 + Xi+l
X S =0
i o

i=1,2,...,100

QIx
(@]
S

Yes

[N
A
|

(GO ’I‘O\ PRINT:
N. PROB/ SRR
N

FLOW CHART FOR EXAMPLE 8

FIGURE 20.

68

On the flow chart of FIGURE 20, we have indicated that we want the
computer to START by reading and recording the 100 numerical values correspond-
ing to the given Xi' We assume that they are recorded on cards in standard

his we

i

form, 6 numerical values per card. To instruct the computer to do
write
READ(100)NOS.AT(X1)%
The integer enclosed in parentheses immediately after READ specifies the
number of values that are to be read and recorded. (Actually, one may write

the explicit integer as above, or the name of an existing integer). The

name enclosed in parentheses immediately after AT specifies where they are

insure that there will be no conflict in identifying the 100 X's, we

reserve internal space by writing a BLOC statement
BLOC(X1 - X100)%

The BLOC statement not only reserves 100 consecutive spaces for the X's, it
a lishes X2, X3, ..., X99 as valid names associated with the X's.
(This may seem trivial, however, it is necessary since names such as XA, X',
X., ete. are also permissible names!). Since BLOC is an order type (

may only appear in columns T7-10, the bloc definitions themselves are
recorded commencing in column 11. Also, since BLOC is an order type (0.T.)
word, it is not transformed into machine instructions, hence it is generally

placed after the PROB card and before the START card.
To obtain the sum of the X's we could write a statement
S=X1 +X2 + X3 + ete.,

however; 1 may be large (several thousand) and consequently we generalize so
that we do not have to write and identify each and every term. We will genera-
lize by computing "partial sums", generally denoted by S.. We first SET(I=0)

and define the corresponding partial sum, SO = 0. The general partial sum is

69

defined in terms of the previous partial sum; i.e.,

Siq1 =51 * X

When our ultimate goal is to obtain the final sum, we need not even distinguish
between the (i+l)st and the ith partial sum, hence we may write
S =8 +X,
i+l
because the existing value of S is used on the right of the equality before

the resulting value is assigned to the name on the left of the equality. We
have arbitrarily labelled the general partial sum definition, PARSUM. The
program, corresponding to the portion of the flow chart which has been dis-

I
cussed thus far, is as follows:

PROB C906 M.J. ROMANELLT 45107 EXAMPLE 8
BLOC (X1 - X100)
START READ(100)NOS.AT(X1)% SET(I=0)% S = 0
PARSUM S =8+X,I
When the computer encounters the PARSUM statement for the first time, the
existing value of S is zero and T = O, hence after executing the PARSUM state-

ment for the first time, the computer obtains

Since we have generalized, we could obtain our desired solution if we could
instruct the computer to execute the PARSUM statement exactly 10C times, cor-
responding to I = 0,1,2,...,99. The general COUNT statement was designed

specifically for such situations! The COUNT statement is generally written in

70

COUNT (A) IN (B) GoTo (C) %

where:

A is the name of an explicit integer or name of an integer;
B is the name of an integer;

C is the name of a place.

First, the index, whose name appears in the parenthesis after IN, 'is auto-
matically increased by unity.

Next, the existing value of the B index is compared with the integer indicated
in parenthesis after COUNT, (or with the existing value of the index whose name
appears in parenthesis after COUNT), i.e. the existing value of B is compared

with the existing value of A.

Finally, if the existing value of B is less than the existing value of A, then
the computer goes to C for subsequent instructions; otherwise, i.e., if the
existing value of B is > or = the existing value of A, the computer goes to
the next statement, i.e., the statement immediately following this COUNT state-

ment.

Again, to generalize, if the initial existing value of B is the integer b and
the existing value of A is the integer a, then the instructions at C will be
executed exactly

(a - b) times
For our example, we write

COUNT (100)IN(I)GOTO(PARSUM) %

Since, we initially set I = O so that X1,I initially represents the first X,

(100-0) times. Of equal importance is the fact that the index i will auto-

matically take on the desired values 1,2;3,...,100. We have emphasized the

Tl

fact on the flow chart by writing i =31 + 1 in the box just

. N~

determination as to whether i <100 ? Note also that even though i will
take on the value 100, the PARSUM statement will not be executed corresponding

es
to 1 = 100, since as indicated, i 1s advanced by unity immediately after the

the PARSUM statement and just prior to the determination of

LY

execution o
i €100 ? Hence, the single COUNT statement corresponds to the two boxes of
the flow chart indicated below:

i=3i+1

|

« Y851 5 < 100 7

l#o

Hence, immediately after the PARSUM statement, we write the COUNT statement.

The COUNT statement is followed by the PRINT statement and then the "new"

statement
GOTO(N.PROB)
is written. We use this latter statement to signal to the computer the end

of the execution of our problem, and it directs the computer to the reading of

the next problem residing in the input device.

The program, input and output corresponding to EXAMPLE 8 is listed in FIGURE 21.

T2

¢l

PROB C906

M.J.

BLOC(X1-X100)

START
PARSUM

S

END
10000000
70000000
13000000
19000000
25000000
31000000
37000000
43000000
49000000
55000000
61000000
67000000
73000000
79000000
85000000
91000000
97000000

MAY.23,63
PROB C906

ROMANELL1

45107

READ{100)INOS.AT{X1)Z¥ S=0% SET{(J=0)
S=S+X1,1

COUNT(100)IN(I)GOTO(PARSUM)

PRINTKS = >S% GOTO(N.PROB)

GOTO(START)

02

02
02
02
02
02
02
02
02
02

BRLESC

20000000
80000000
14000000
20000000
26000000
32000000
38000000
44000000
50000000
56000000
62000000
68000000
74000000
B0000000
86000000
92000000
98000000

M.J.

= 50500000 4

01
0l
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02

30000000
90000000
15000000
21000000
27000000
33000000
39000000
45000000
51000000
57000000
63000000
63000000
75000000
81000000
87000000
93000000
99000000

FORAST Fé62

ROMANELLI

01
01
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02

45107

40000000
10000000
16000000
22000000
28000000
34000000
40000000
46000000
52000000
58000000
64000000
70000000
716000000
82000000
88000000
94000000
10000000

01
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
03

FIGURE 21.

EXAMPLE 8

50000000
11000000
17000000
23000000
29000000
35000000
41000000
47000000
53000000
59000000
65000000
71000000
77000000
83000000
83000000
95000000

EXAMPLE 8

01
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02

23 JULY,63 PAGE

60000000
12000000
18000000
24000000
30000000
36000000
42000000
48000000
54000000
60000000
66000000
72000000
78000000
34000000
90000000
96000000

o1
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02

~N OV W N e

0000001

EXAMPIE 9.

This example illustrates the MOVE and INC (increment) statements, and

the SYN (synonym) order type.

Xi) recorded on cards in standard form, i = 1,2,3,...,20.

GIVEN: X, and T
A t

)
he X. on four consecutive cards, 6 values on each of the

D

first three cards, and two values on the fourth card. Assume
the corresponding f(X.) on the next four cards, again 6 values

i
on each of the first three cards and two values on the last card.

Assume that the Xi are not in monoctone segquence.
REQUIRED: Obtain a "re-arranged" table of the X, and corresponding f(Xi)
oA 1
c1inh +ha+t
2 ALl wviilch v
X. <X, for all i.
i =i+l

i.e., the original and re-arranged tables

with the numerical entries in standard form. In particular,
print a table in the following form:

ORIGINAL REARRANGED
X1 FI XT FI
o~ —_— ~ o~
—~ ~ —~ _—

Since we will have to instruct the computer to determine if each Xi < Xi+l’

we will first provide for getting the given table of numerical values recorded

internally. This can be accomplished with the following READ statements:

READ(20)NOS.AT(X1)%

READ(20)NOS.AT(F1)%

Th

Alternatively, we can provide for the internal recording of both the X, and

corresponding f(Xi) with the following READ statement:
READ(L4Y4)NOS.AT(X1) %

With this single READ statement, we are instructing the computers to include
in the 4h4 numerical values, the four "extraneous" X5 (i = 21,22,23,24), of
the 4th card. (Recall that only two X., (i = 19,20) are recorded on the 4th
card). In the absence of a format, th; computers assume 6 standard values

per card until the READ r PRINT) statement is fulfilled.

To reserve space in internal storage for the Xi and f(Xi) we write the

BLOC(X1 - XhL)

For future references to the f(X) we write a SYN statement

g

SYN(F1 = X25
he equated names are assigned identical internal names
(identical integers) and hence references to any of the equated names refer
to the same quantity. Again, recall that the BLOC statement not only reserves

space in internal storage, it also establishes X1,X2,X3,...,XLk as valid names.

e - A

The above SYN statement establishes F1 and X25 as synonomous names. Wi

the SYN statement we could refer to the f(Xi) in many ways, for example,

X24,T where I =1,2,...,20
or X1,J where J = 24,25,...,43.

However, with the SYN statement we can refer to the f£(X,) as

F1,I

thereby retaining the symbolic identification of the given data. Further, if
we refer to the X; as X1,I and if we refer to the f(Xi) as F1,I we need only

5

"manipulate" the numerical value for I to make references to X, and the

corresponding f(Xi).

Our problem requires that both the original and re-arranged forms of the
table are to be printed. To have both forms available in internal storage
for printing, we can have the given table recorded in two areas. In one area

we can retain the original form, in another area we can interchange any values

(]
=

required to obtain the desired re-arranged form. To reserve spac

or

o

s}

second area we can augment the BLOC statement; i.e., we simply add another
parenthesized expression which defines the second area. Let us arbitrarily
denote the second area as (X'1 - X'4L4). The BLOC statement which reserves

space for both areas is then of the form
BLOC(X1 - XhhL)(X'1 - X'4l)%

(Alternatively, one could define a BLOC (X1 - X88) and an accompanying
SYN (X'1 = X45) to reserve space for both tables and identification of the
second area beginning at X45).

Now, the single READ statement will provide for the recording of the
given table in the X1 - Xk area. To obtain a copy of t

X'l - X'bh area, we use the convenient MOVE statement. The MOVE statement is

e olwran Fahls $Tn | .
e giverl table 10 uvie

generally of the form

MOVE(A)NOS.FROM(B)TO(C)%

where:
A is either the name of an integer or an explicit integer which
defines the number of quantities that are to be moved;

B 1s the name of the first quantity in a source area;

C 1is the name of the first quantity in a destined area.

The quantities are retained in the source area and hence after the MOVE state-

ment has been executed the quantities exist in both areas. In the above MOVE

76

statement it is assumed that the quantities in both areas will be uniformly
spaced ,one unit apart. Uniform spacings other than one unit may be specified
for the source and(or) destined area by following the symbolic name with a /

and the integer defining the spacing. For example,
MOVE (N)NOS.FROM(A/3)TO(B/5)%

indicates that the N quantities in the source area are three units apart,

the N quantities in the destined area are to be spaced five units apart.

For our example we write

Ordinarily we plan a solution by drawing a flow chart. In this example,
we delayed the drawing of the chart until the capabilities of the new state-
ments were discussed so that the novice obtains some insight as to "how" the
flow chart solution can easily be expressed in the FORAST language. The

s

complete flow chart for a solution is given in FIGURE 22.

T

Yes

FLOW CHART FOR EXAMPLE 9

READ:; X! o= X, TSTFWD
X f(X,) £1 t — - - 3
T i >l f (Xi) = f(Xi) i =0 i X S¥X
i=1,2,...,20 i=1,2,...,20 No
i
INTERCHANGE:
t =X,
Xia1 = %40
L t
t=1iy
310 - fi+l B fi+2
SN t
Yes cJ Yes
X X 0 . < No . ” = . .
J+lSJ+2 J_J'l J=O' J =1
No
INTERCHANGE:
t = Xj+l t = fj+l
X0 ™ %340 41 = Ty
x:+2 =t fj+2 =t

FIGURE 22.

CI No
i i+1 i=19 ?
Yes

i

PRINT & IDENTIFY
ORIGINAL AND RE-
ARRANGED TABLES

O

()

t the first two boxes of the flow chart of FIGURE 22
indicate the recording of the given data in two areas of internal storage,
the primed and unprimed areas. The third box indicates that the index 1

. The next box labelled TSTFWD

T~
t

est forward)
/

L WL L

w

K]
£

satisfied, the

e
[&¢]

indicates the monotone test. If the monotone condition

index i dis advanced by one and thence a determination is made as to whether
all of the X's in the table have been tested. If all have been tested, the

existing value of i is 19 and hence we indicate the printing of the tables.
If all X's have not been tested, (i < 19), hence we want the computer to test
the next pair.

L and Xi+2’ and the corresponding functional values. This interchange will

guarantee that this pair now satisfies the monotone condition, but once an
interchange is made, we have no guarantee that the monotone condition prevails

for all X! reviously been tested. Hence, we must test backwards

until one pair of X's does satisfy the monotone condition. To perform this

backward test, note that we define another index J which initially takes on
the existing value of 1. Next, if J = 0 no further backward testing is

necessary, hence we indicate that forward testing is to be resumed. If
is not zero, the existing value of j is diminished by one and the backward

ti
test continued. ©Note that an interchange is indicated any time the monotone
condition is not satisfied. As soon as the condition is satisfied in the
backward testing, the forward testing is resumed.

9

08

PROB (906 M.J. ROMANELLI 45107 EXAMPLE 9 230 JUEY .63 HAGE {
BLOC(X1-X44)X*1-X"44) 2

SYN (F1=XZ5) 3

START READ{44)NOS.AT(X1) 4
MOVE(44)NOS.FROM{X1)TO(X*]1) 5

SET(I1=0) 6

TSTFWD IF(X1,I<=X2,1)60T7T0(CI) 7
T=X14+12% X1,I=X24,1% X2,I=T 8

T=F1,[% FlyI=Fl,(I41)2% Fl,(I+1)=T% J=I 9

oJ IF-INT{J=0)GOTO(TSTFWD)% INC(J=J-1) 10
IF(X14J<=X2,J)GOTO(TSTFWD) 3 11

T=X19JZ X1l9J=X24J% X2,J=T 12

T=F1,J%8 FlyJ=Fl,(J+1)% Fl,(J+1)=TZ GOTO(CJ) 13

cl COUNT(19)INII)GOTO(TSTFWD) ¥ 14
PRINTL ORIGINAL REARRANGED> 15

PRINTKL X1 FI X1 FI>% SET(I=0) 16

WORK PRINTIX'12I)X*25,1)X141)F141)% COUNT{20)IN{I)GOTO(WORK) 17
GOTO(N.PROB) 18

END GOTO(START) 19

93000000 00
17000000 01
13000000 01

95000000 00 98000000
17500000 01 18000000
13500000 01 14000000

00 10000000 01
0Ol 18500000 Ol

12000000 01 12500000 O1
19000000 01 19300000 O1

19800000
59783000
-12884000
26750000
-39788000

01 20000000
00 58168000
00-17825000
00 21901000
00-41615000

01
00 55702000
00-22720000
00 16997000
00

01 15000000 O1

00 54030000 0O

16000000 01

36236000 00

16500000 01

31532000 00

00-27559000 00-32329000 00-35153000 00
00 70740000-01-29200000-01-79120000-01

MAY.23,63 BRLESC FORAST F62

PROB C906 M.J. ROMANELLI 45107 EXAMPLE 9
ORIGINAL REARRANGED
' Fl X1 FI
93000000 59783000 93000000 59783000
95000000 58168000 95000000 58168000
98000000 55702000 98000000 55702000
10000000 1 54030000 10000000 1 54030000
12000000 1 36236000 12000000 1 36236000
12500000 1 31532000 12500000 1 31532000
17000000 1-12884000 13000000 1 26750000
17500000 1-17825000 13500000 1 21901000
18000600 1-22720000 14000000 1 16997000
18500000 1-27559000 15000000 1 70740000-01
19000000 1-32329000 16000000 1-29200000-01
19300000 1-35153000 16500000 1-79120000-01
13000000 1 26750000 17000000 1-12884000
13500000 1 21901000 17500000 1-17825000
14000000 1 16997000 18000000 1-22720000
15000000 1 70740000-01 18500000 1-27559000
16000000 1-29200000-01 19000000 1-32329000
16500000 1-79120000-01 19300000 1-35153000
19800000 1-39788000 19800000 1-39788000
20000000 1-41615000 20000000 1-41615000

FIGURE 25.

0000001
0000002
0000003
0000004
0000005
0000006
0000007
0000008
0000009
0000010
0000011
0000012

0000013
0000014
0000015
0000016
0000017
0000018
0000019
0000020
0000021
0000022

The program contains two new concepts which have not been discussed.

Note first the name
F1,(I + 1)

on line 9. This is used as a reference for f(Xi+2). The above is an

illustration of an indexed name of the form

where A is a defined base name, B is the name of an index

and n is an integer. The resulting name is obtained by increasing (or
decreasing) the existing value of B by n and adding this result to the base
name A. That is, the parenthesized expression is evaluated and the resulting

gt
integer is added to A to obtain the resulting name. If for example, the

existing value of I is 7, then

F1,(I + 1) represents the name F9

)

F1,(I - 3) represents the name F5.
Next, on line 10 is an illustration of the INC statement of the form

INC(A = A + n)

where A is the name of an index and n is an explicit integer. This statement
is generally used to increase (or decrease) index values by constant amounts.
(More general means for operating on integer values will be illustrated in

later examples) For our example we wrote
INC(T = J - 1)

which told the computer to dimish the value of J by one.

EXAMPIE 10.

This example illustrates the LIST order-type word which is used for

a.) It is used by the programmer to obtain a listing which shows the
one to one correspondence between the symbolic names in his program and unique
integers. The unique integers represent the absolute machine names of the
internal storage units. Hence this listing shows the programmer the explicit
storage assignment by the FORAST compiler. Since the compiler does not check
for all possible violations and conflicts, a study of the listing can reveal

conflicts of storage assignment or other programming errors.

b.) It is used by the professional programmer to obtain the absolute
machine language corresponding to his symbolic FORAST language. We will
indicate how this is obtained and list the absolute machine language of

EXAMPIE 10; however, we leave the interpretation to the professicnal programmer.

During the transformation from the symbolic FORAST language to the absolute
machine language, indications of errors will be printed to inform the pro-
grammer of the errors. Further, the listing (dictionary) referred to under
a.) above will be produced and no attempt will be made to execute the program.

] +1
ren though nc errors were detect-

The novice will find on many occassions that ev
ed during compilation, his program does not run correctly. In such a case, no

dictionary is obtained and to begin to determine a source of error (or errors)

it is advisable toc obtain the dictionary. To cbhbtain the dicticnary, we simply

b

record LIST in columns 7 through 10 of a card and place this card in front of
the END card. This indicates that the dictionary is desired and will be pro-
ted during compilation. (When the

0]
jof)
1]
ot
(D
[¢]
+
D
ol
=
H
o]
(0]

duced whether or not any errors ar
absolute machine language is desired in addition to the dictionary, S.CODE is
recorded beginning in column 11 of the LIST card referred to above).

74

We have inserted a LIST card in the program of EXAMPLE 10. The resultis

are listed in FIGURE 2k.

83

18

23 JULY,63 PAGE

PROB C906 M.J. ROMANELLI 45107 EXAMPLE 10
BLOC{XL=-X44)X"]1-X"44)

SYN
START

TSTFWO

cJ

CI

WORK

(F1=X25)

READ(44)NOSL.AT(X1)

MOVE(44)NOSFROMIXL)TO(X1)

SET(I=0)

IF(X1,I<=%x2,1)G0Y0¢(C1I)

T=X141% X1lsI=X2,12 X2,1=7

T=Flsl% Flyl=Fle(I+1)% FlelI+1)=TT J=1
IF-INT(J=0)GOTO(TSTFWD)Z INC(J=Jd-1)
IF{X14J<=X2,J)GOTO(TSTFWD) %

T=X19JET X1eJd=X2,JF X24J=T

T=FlsJd¥T FleJ=Fle{J+1)T Fl,y(J+1)=TZ GOTO(CJ)
COUNT(19)IN(I)GOTO{TSTFWD) X

PRINTKL ORIGINAL REARRANGED>

PRINT(X1 Fl X1 FI>X SET(I=0)
PRINTUX'LyIX)X*25s1)XLsI)FLsI)%Z COUNT(20)IN(L1)GOTO(WORK)
GOTO(N.PROB)

LIST S.CODE

END
93000000
17000000
13000000
19800000
59783000

-12884000
26750000
-39788000

GOTO(START)

00 95000000 00 98000000 0O 10000000 01 12000000 01 12500000 01
0L 17500000 01 18000000 Ol 18500000 01 19000000 01 19300000 01
01 13500000 01 14000000 01 15000000 01 16000000 01 16500000 01
01 20000000 01

00 58168000 00 55702000 00 54030000 00 36236000 00 31532000 00
00-17825000 00-22720000 00-27559000 00-32329000 00-35153000 00
00 21901000 00 16997000 00 70740000-01-29200000-01-79120000-01
00-41615000 QO

X N O NS W N e

o 0

EXAMPLE 10

45107

FORAST F62
M.J. ROMANELLI

ESC

N0~ Z
NOQWNOO
~O~O0O

T2
=Tz
e o =t
2 2 2 XX 0

M

- A

OoOOM~VO
~NOWON
2 el el el
[a] (=]
o WX
(- - G Y- 4
ot N0
ZN R

EXAMPLE 10

45107

1
128

BRLESC FORAST F62
906 M.J. ROMANELL

PROB C

MAY 23463

OM~NO0OZUO=~OWV
wing NO ™~
—t
@® @ =
NN
OoONIOM~OO000
AN W ™M
—~Ne—t - O

[e]-v}

6N

1F64000
1028158281702812

LF6576654

05

P Y b W Y

oNF NN
O i

oo Z

oy N
OZONMOOOOODZ0O
o o 0
O -

[s o] o] (22]

o [Val
—_ O O XM MUl T
OOVXNYM == OO

O ZNNO~NO OO

0
0
0
6N
1F 2958HK69

0128000
1
0
1

OF
KK
KK
KK
KK
05

ONNITONPVOOO0O

EXAMPLE 10

45107
REARRANGED

63 BRLESC FORAST Fé62
.906 M.J. ROMANELLI

v
ROB

MAY.23
[

OO O~NNMIIN O OO ~N
QDO DO i i i o i i, o o e e £ TN O
[oleleloleleolololalalolalolelololole]

olelolololelololololalololololelolololelole]
lolelelololelolololalalelololololololelelole

ANOONNEOMAINOOMN~R DT O
OO O el end ol] e vl v]]]] e e e = N
v e v
0%0
{ |
leolelelolololololololololololololololole)
[e]eleleoleolslolololololololololololololo]

=OOO000IOD0IO000000D00
LOONOONTNOCOCMO~NM OO0
OOVOMNOMONNNNNNO O N~
PP~ ONANAOOMNM PN MO
CONFO=NMNNNO~NQORIO
WA M =t = NN PO YN it e Y B
P e P

ORIGINAL
1
1
1
L
1
1
1
|
1
l
1
l
1
1
1
1
1

o

(=

=000 o
i jelelalololelslel o
(slelolololelololololololelolelole

£ . s S e P P e P~

0000
0000

o
o]
@]
o
[

FIGURE 2h.

all of the symbolic names used in the program are listed
in "alphabetical" order. (Numerals in general are "less than" any alphabetic
character and appear in the "alphabetical sequence" before any alphabetic
character). Immediately to the right of a symbolic name is the unique integer
assigned by the compiler. This integer is recorded in the sexadecimal number
system, (base 16). The characters in this system which correspond to the
decimal ten, eleven,...,fifteen are respectively K,S,N,J,F and L. Hence the

integer listed corresponding to the symbolic name
X1 is 128 ,
which represents the decimal integer

1x (16)2 S (16)1 + 11x{16)O = 256 + 32 + 11 = 299.

The integer (absolute machine name) is generally followed by one or more of

the alphabetic characters, A,B,F,I,L,M,R,S or U. Only a few of the meanings

B indicates a BLOC name and opposite the end name of the BLOC

is an integer which represents the uniform spacing between

tef

indicates the name of a function;
I indicates that the name is an index name;

L. indicates a name that was recorded in the LOCATION columns,

usually a statement name;
S indicates that the name was defined in a SYN statement.

U indicates that the name appeared only once in the program

and hence this single reference may indicate a programming

or punching error.

Q
[OaY

As an illustration of an undetected error, suppose on line T of EXAMPIE 10
one wrote GOTO(Cl) and on line 14 in the LOCATION column one wrote CI. Note
that

Cl #£ CI

and both C1 and CI are distinct and valid names. Both would appear in the
dictionary followed by the letter U +to indicate single references. The
obvious error is that Cl and CI were not designed as distinct references,

and either the 1 should be changed to I or the I to 1. The last three entries
in the listing

% INDEX
% NOS.
% SUBS.

correspond to the extent of the storage used for indices, constants and
functions. The integer opposite % INDEX corresponds to the integer that
would be assigned to the next index encountered. Similarly, the integer
opposite % NOS. corresponds to the integer that would be assigned to the next
constant encountered. Finally, the functions (subroutines) are allocated
space at the end of internal storage (largest integers) and hence the next
function encountered would be assigned space just above the integer opposite

% SUBS.

87

EXAMPLE 11.

This example introduces the CLEAR and SETEA statements and illustrates

convenient variations of the CCUNT, READ and BLOC statements.

;=7

GIVEN: Xi and f(Xi) recorded on cards in standard form, i = 1,2,...,20

Assume the Xi are in monotone sequence.

REQUIRED: Compute and print a table of forward differences,
o AJ-1 J-1
175 T8

where

i=1, 2, 3, , 20
N

and all undefined A's = 0, i.e.,

=0 forj=l,2,5,l‘

P

N2 =0 for 3, b, ete.

it
no

Print the table in the following form:

X,I F,I 1DEL,I @2DEL,I 3DEL,I A4DEL,I

X, f(Xl) 0 0 0 0
X, f(X2> Aé 0 0 0
Xy (%) a% Ag 0 0
R, T®R) 4 4 5 0
X) o x5 A::

There are many ways that one can obtain the solution for this example.
We chose the method indicated in the flow-chart of FIGURE 25 to illustrate
a variation of the BLOC statement which permits us to conveniently index and

reference elements in a two dimensional array. Illustrated below is a symbolic

form of the desired two dimensional table.

E 1 2 3 ‘ 5
1 X £ 0O 0o ©

L L

1

2 X, f, & 0 0 0
Z b’ 1 /\2 0 O
50 X Ty & & O
. . 1l 2 3
oK f) 4 4 4 O

X £ L2 3 A
> X I & & & 4

2

1 3 b4
0 Xn f5 S S %o S

§v]
(&

We have labelled the rows of the table 1 through 20 and the columns
1 through 6. Note that the entries in the first two columns correspond to the

given data, the X, and f£(X.).

To reserve internal storage space for this array we write the BLOC state-
ment
BLOC(El,1 - E20,6)
The first name in the enclosed parenthesis, El,1 defines the name of the

first element in the array; in particular it defines the name of the element

s ap N _ . .
in the first row and first column. The last name in the enclosed parentheses,

89

last element in the array; in particular E20,6 defines the
element in the 20th row and 6th column. Hence, space is reserved for the 120
elements in the 20 by 6 array. Having defined the array with the BLOC state-

eferences 1o any element in the array can be made by writing
E focllowed by the explicit integers which define the row and column, the row

and column integers must be separated by a comma. For example, we can refer

(]
to f(X.) by writing E5,3 and similarly we can refer to X, by writing E3,1

5 J

urther, any of these references may be used as a base name in a general index

name. For example,
E1,1,d

is a valid name and the particular element refereénced depends on the existing

value of J.

If J =1 E J

ct
o
1]
+—
1]

s equivalent toc the name E1,2 and refers

[=

11
.L).L,
If J =7, El,1,J is equivalent to the name E2,2 and refers to element f2.

If J =L, E2,5,J is equivalent to the name E3,1 and refers to element Xy
~

The programmer must bear in mind that successive elements in a row are spaced
ie unit apart whereas successive elements in the columns are spaced six unit
apart. Hence, to advance references from one element to another the index

values must be manipulated accordingly. The flow-chart for this example is

90

START
5 =4 - & - A‘g =0 NXTLIN GENDIF
—>1 READ: X, and f(Xi) > = O = + e B2,3,j=E2,2,5 - E1,2,]
=1,2,...,20
J=J+ ll

g g <y, + b2

No

Yes

Undefined A's = 0O Nolj <11k 2

PRINT: Table

(-
Il

(R
+
no

FLOW CHART FOR EXAMPLE 11.

FIGURE 25.

Note first the indication that the elements A%, Ag, Ai and Ag are to be
defined as zero since they correspond to undefined differences. To instruct

the computer to do this we use the convenient CLEAR statement which is of the

form

CLEAR(A)NOS.AT(B)%

where A is the name of an index or an explicit integer, and B is the name of
the first of the consecutive quantities that are to be cleared, i.e., their
numerical values are set to zero. If A is the name of an index, then the

current value of that index specifies the number of quantities that are to be

91

cleared. If A is an integer then the integer defines the number of quantities
that are to be cleared. It is assumed that the quantities are uniformly spaced
in internal storage and in the absence of a specified spacing it is taken to

be unity. If a spaci: * than unity is desired it is specified by follow-

(¢
}_H
=
o
o]
ct
—~
=
4]
et

ing the name B with a slash, /, followed by the integer which defines the
spacing. For example, if we want to clear all of theelements in the b4th

column we would write

CLEAR(20)NOS.AT(E1,4/6)%
For our example we write

CIEAR(L)NOS.AT(E1,3)%

Next, to read an e given Xi and f(Xi) in th first two columns
of the reserved array, we use a variation of the READ statement where we can
specify that the uniform spacing of the quantities to be recorded is not unity.

In particular, the uniform spacing is six, hence we write
READ(20)NOS.AT(EL,1/6)%

which provides for the reading and recording of the twenty Xi's in the reserved

area. Similarly, we write

READ(20)NOS.AT(E1,2/6)%

. . - I TR B S | z . 1 gizes 1 YA IR TN S 13
which provides for the reading and recording of the twenty I(Ai‘S) in the

reserved area.

Now, assuming that the given data have been read and recorded in the
reserved area, we plan to generalize the difference definition so that by
generating prescribed values of an index we will instruct the computer to

iferences for a given line. Then we will instruct the

o
jo7)
[

compute and record th

computer to repeat the process for subsequent lines.

To generalize, note that each difference is defined as the difference of

two neighboring quantities in the array, namely the preceding row element minus

92

its preceding column element. In particular,

E2,3 = E2,2 - E1,2

E3,5 = E3,2 - E2,2

EL,3 = E4,2 - E3,2
and in general we can define

E2,3,J = E2,2,j - E1,2,J

to obtain all of the desired differences provided that J takes on prescribed

values.

First, if J took on values 0,1,2, and 3 we would obtain results for the

second row; however, only the first difference Aé, is defined.

Similarly, if J took on values 12,13,14 and 15 we would obtain results

ith row; here the first three differences are defined.

and record the

=
Q
=]
¢l
QO
al
<
D
ol
e
D
S
¢l
'D
£
[0
—
]
o]
é
ct
ct
joy
o]
Q
=
fe]
o
ct
o]
1
ct
(e}
o
o
S
;_.
ot
D
¢

incorrect differences in the 2nd, 3rd and Lth rows to maintain generality.
Prior to printing the desired table, we will instruct the computer to replace

the few "incorrect'" differences with their correct zero values.

To achieve the generality, note that the index j is set to zero, and for

J =0,1,2 and 3 the general definition

o

E2,3,J = E2,2,J - E1,2,J

will provide the four entries for the second row. Prior to entering the
general definition, we set another index, jo to have value j + 4 so that we
can use a COUNT statement to automatically advance j by unity and terminate

the computations after the four differences for a given row have been computed

93

:-

and recorded. The COUNT statement will have the form
COUNT(JO)IN(J)GOTO(NXTLIN)

After the differences for a given row have been computed and recorded,
we instruct the computer to determine if all rows have been completed. Again
we can use a COUNT statement for this purpose since we know the precise number
of rows that we want processed. Further, if all rows have not been processed,
utations

the existing value of J should be advanced by 2 to commence the com

D
for the next row. Again, the COUNT statement is convenient for both purposes;

a |o

the determination as to whether all rows have been processed; an
matic increase of the index J by 2. The COUNT statement which will achieve

both is written in the form
COUNT(11L/2)IN(J)GOTO(NXTLIN)%

This variation of the COUNI' statement specifies that the current value of
the index J is to be advanced by 2, then determine if this new value of J < 11k
114, go to next line, otherwise continue with the statement immediately
following this COUNT statement. Note that the specification of the amount by
which the index is to be advanced is specified after the slash following the
maximum count, 114. (The student should verify that the maximum count, 114,
will indeed provide for the processing of the 20th row and terminate the compu-

tation of the general differences. He should also verify that maximum counts
of 109, 110, 111, 112 or 113 would achieve the same result).

Note that after all rows have been processed we instruct the computer to
replace the few incorrect undefined differences with their correct zero values
and then print the desired table.

We stated previously that at NXTLIN we would instruct the computer to
let another index, jn,take on a value equal to j + 4. Here we use the con-

venient SETEA statement which has the general form

SETEA(A = B,C + n)

ok

WIere:
A and C are index names;
B is any name;

n is an explicit integer.
The result of the general SETEA statement is that

a value equal to the "name" B + the existing "value

(Note, not the "value" of B and not the "name" C).

For our example we wrote
SETEA(JO = , J + k4)

A more general means for operating on integers is provided by prefixing
formulas with the name INT. Prefixing formulas with INT indicates a departure

from standard floating-point operations and in particular indicates that in-

G R - T P peerg, |

teger arithmetic is to be used to obtain the result. For exampile,

INT(A =B + 3 - C * D/E)

is vali d that B,C,D and E are names of existing integers and inter-

mediate operations do not yield results which exceed the restricted range of
permissible integer representation. (For compatibility on both ORDVAC and

BRLESC,; indeX integer values should not exceed 219 in magnitude, non-index

LRI

T A TN T T~

integers are permitted and for compatibility on both ORDVAC and BRLESC should
Z0
not exceed 2°7 in magnitude). A further note of caution to the novice, inter-

nal representation of integers necessitates special rules for integer operat-

+ 1

not vield eavaet dnt + avample . in N Vo E
107 yieila eXacCTl 1inveger results. If, for caamylc, in wne aoove
S

INT statement, existing values of D and E are 1 and 3 respectively, then
D/E = 1/3 and the computers will yield 1 as the result for D/E. In general,

" o

~ o 3
+CT ey all 11l

[

f integer division is a positive mixed number, (
teger part and a fractional part), the integer result assigned is one greater

than the integer part of the mixed number. If the result of integer division

95

miwvad
ma Al

is a negative

of the mixed number.

The program, input and

the result assigned

output for EXAMPIE 11 are listed in FIGURE 26.

Note on line 8 of the program the statement
n 1. I - Z 1} ~ of
E2,k = E2,5 = E2,6 = E3,5 = E3,6 = E4,6 =0 %
This is an example of assigning a numerical result to many distinct quantities.

A result may be assigned to
of each is separated by the
the CLEAR statement in

spaced in internal

as many as 15 distinct quantities where the name
equality symbol. We could not conveniently use

case since all of the elements were not uniformly

96

66

MAY.Z23,63
PROB

Xy1
93000000
95000000
98000000
100000600
12000000
12500000
13000000
13500000
14000000
15000000
16000000
16500000
17000000
17500000
18000000
18500000
19000000
19300000
L9800000
20000000

BRLESC FORAST F62
C906 M.J. ROMANELLI 45107 EXAMPLE 11
Fol 1DELy I 2DEL 4 [3DEL,y I 4DEL, I
59783600 00000000 00000000 00000000 00000000
58168000 -16150000-01 00000000 00000000 c0000000
55702000 -24660000-01-85100000-02 00000000 00000000
1 54030000 -16720000-01 79400000-02 16450000-01 00000000
1 36236000 -17794000 -16122000 -16916000 -18561000
1 31532000 -4T7T040000-01 13090000 29212000 46128000
1 26750000 -47820000-01-78000000-03-13168000 -423806000
1 21901000 -48490000-01-67000000-03 11000000-03 13179000
1 16997000 -49040000-01-55000000-03 12000000-03 10000000-04%
1 70740000-01-99230000-01-%0190000-01-49640000-01-49760000-01
1-29200000-01-99940000-01-71000000-03 49480000-01 99120000-01
1-79120000-01-49920000-01 50020000-01 50730000-01 12500000-02
1-12884000 -49720000-01 20000000-03-49820000-01-10055000
1-17825000 -49410000-01 31000000-03 11000000-03 49930000-01
1-22720000 -48950000-01 46000000-03 15000000-03 40000000-04
1-27559000 -48390000-01 56000000-03 10000000-03-50000000-04%
1-32329000 =-47700000-01 69000000-03 13000000-03 30000000-04
1-35153000 -28240000-01 19460000-01 18770000-01 18640000-01
1-39788000 -46350000-01-18110000-01-37570000-01-56340000-01
1-41615000 -18270000-01 28080000-01 46190000-01 83760000-01

FIGURE 26.

0000001
0000002
0000003
0000004
0000005
0000006
0000007
0000008
0000009
0000010
0000011
0000012
6000013
0000014
0000015
0000016
0000017
0000018
0000019
0000020
0000021

EXAMPLE 12.

Specific indications of errors detected during compilation of a program
are recorded on an output device to inform the programmer of the particular
errors detected. To illustrate the particular information obtained pertain-
ing to detected errors, we wrote a short program which contains several pro-

ramming errors. We submitted the program to the computer, cbtained and
listed the results so that one can correlate the information produced with

the particular statements of the program submitted.

The program and output obtained are listed in FIGURE 27 below.

100

TOT

EXAMPLE 12

X=Y+1% U=V
E=Xy1+G1ly2
F=785.3<99
IF-ABS(X=Y
IF-INC(J=0
FIX)=X#x2

MOVE(N)INOS
GOTO(BEGIN

PROB C906 M.J. ROMANELLI 45107
START X=Y4+2% U=V-WE A=B#C D=SIN(X/W)
E=XeI+G142,4K
F=785.3<999
[F-ABS(X=Y)GOTO(CHINA)
IF-INC(J=0)GOTO(ALASKA)
FIX)=X#u2
COUNT{50)}IN(J)GOTO{FRANCE)
MOVE(N)NOS.FROM(A,1)TO(ByJIGOTO(SIAM)
END GOTO{(BEGIN)
ERROR 45 [LL. = 3 2 =SIN(X/W
ERROR 03 2 COMMAS 2 3 4K
ERROR 35 [LL.C OR > 1 4 99
ERROR 08 ABS IN IF= 1 5 Y
ERROR 11 ILL PAR If 1 6 (J=0
ERROR 01 ILL. O.T. 1 T (X)=X=u2
ERROR 14 CL MV NO 2 4 9 SIAM)
ERROR 23 END SYMB. 2 10)
MAY.23,63 BRLESC FORAST F62
PROB €906 M.J. ROMANELLI 45107
A 105 MU I 00sS 1u
8 106 MU J 00K I
BEGIN 107 MU START 100 L u
FRANCE 108 MU u 10K MU
Gl 109 MU v 10S MU

EXAMPLE 12
W 1ON
X 104
Y 10F
z 10L
TINDEX OON

FIGURE 27,

PROB
PROB
PROB
PROB
PROB
PROB
PROB
PROB

MU
MU
MU
MU

23 JULY .63 PAGE

€906 M.J.
C906 M.d.
€906 M.J.
C906 M.dJ.
C906 M.d.
L9906 M.d.
£906 M.J.
C906 M.d.
INOS.
TSUBS.

1
1
2
3
4
5
6
7
8
9
0

1

ROMANELL
ROMANELL
ROMANELL
ROMANELL
ROMANELL
ROMANELL
ROMANELL
ROMANELL

0S0
N70

orams in
rams 1r

1 general contain many statements and consequently many cards.

09

Since errors are detected during compilation, of immediate concern to the
programmer is the recognition of the errors. In particular, which card or
cards contain the errors? Identifying the cards which contain the errors

10 problem to the compiler; however, it is the responsibility of

the programmer to use the means provided for this purpose. This requires the
programmer to uniquely identify each card of his program so that the compiler
unique identification. In particular, the programmer should
use the identification columns provided on the standard programming sheets
and as suggested previously, simple numerical ordering will suffice to quickly
1e card or cards which contain errors. In general, when the com-
piler detects an error, it will record a line of information on the output
device, (cards or teletype). A portion of the information recorded is the
identification of the card that contains the error. Hence if the programmer
uses the simple numerical ordering scheme, the compiler will record on the
output device the identifying number (or that number + 1) that appeared on
the card containing the error. Other relevant information is recorded per-
taining to the error; however, identification of "the" card is most important.
The results shown in FIGURE 27 correspond to the compilation errors detected
on BRLESC . Similar but less detailed results are obtained from ORDVAC. Tables
which classify the types of errors are given on pages 78 through 82 of [‘] .
The essential difference between the ORDVAC and BRLESC results is the amount
of detail information recorded pertaining to the error. OCRDVAC results in-
dicate the classification type of error, the card and field of the card that
contains the error. BRLESC prints the word ERROR, the first and subsequent
characters of the field containing the error, the characters recorded in
columns 11 through 20 of the card in addition to the classification, card and
field identification. BRIESC alsc prints the first 30 characters that were
recorded on the PROB card.

102

B

I'e}
cn S

n a card is detected, the remainder of that card
ignored. Further, if the error was detected near the end of a card the next
card may also be ignored, hence, all errors may not be detected in a single
compilation. The programmer ganerally uses a conventional process of
elimination of errors; i.e., he submits a program, corrects the detected
errors, re-submits his program, corrects and re-submits until no further
compilation errors are detected. Depending on the nature and complexity of

the program, several compilations may be necessary to de

=
Q
t
()]
b_l
o]
3
S
=
=N
3
%
[N
O
]
ot
e
O
=
o]
Hh
[
2
=
Q
3
n
]
=
0
o
~
o7
1)
no
o
AN
g
\»
\N
\»
N
\»
-~
i)
\O
[oV]
o]
fon
}_J
o

103

EXAMPLE 13.

The fact that the compiler does nct detect any errors in a given program

does not infer that there are not errors in the program. Ancther type of error

and through an error in input or otherwise the existing value of X may become

less than zero. Similarly one may write

Z = ARCSIN(X)

and at some point in the computation X may attain an existing value much greater

than one in magnitude due to an error i

Errors which occur during execution are not as easily identified as those
detected during compilation. Here again, the responsibility of correlating
the error with the program lies with the programmer. Many of the function sub-
routines (the functions of single and multiple arguments) include checks for

errors. If errors are detected during execution, information is recorded on

nd the computer will stop unless t provides for
continuation. If for example, the programmer wrote twenty distinct statements
involving the SQRT function, relevant information is recorded on the output

2 A1n QORM worimant
1 v v

o 0o ey - ATITAYIAT S
11T w9l QL EUICILU, Lluwo vl o -+

grammer .

To provide for continuation after an error is detected and relevant in-
formaticn printed, the programmer must include in his program the location
name, ERROR. At the place called ERROR in his program, the programmer may pro-
vide for whatever action he desires. He may for example, at ERRCOR, instruct

the computer to print the twenty arguments of the twenty square roots so that

104

he can then ascertain which of the twenty caused the error. At ERROR one
could write instructions which test each of the twenty arguments tc determine
and identify which of the twenty was less than zero and provide for corrective

action and continuation without stopping the execution of the program.

In the example which follows we will illustrate the use of ERROR so that
the computer will not stop after the first error encountered. In particular,
at ERRCR, we will instruct the computer to print GOOF AGAIN and continue with
the next statement in the program. 1In this way we can illustrate the pertinent

information recorded corresponding to several types of errors.

The program and output are listed in FIGURE 28.

105

[
N

PROB C906 M.J.ROMANELLI

START

2.
3.
4.
5.
6.
1.
8.
ERROR
END

MAY.Z23,63
PROB

RUN ERROR

GOOF AGAIN
RUN ERROR

GOOF AGAIN
RUN ERROR

GOOF _AGAIN
RUN ERROR

GOOF AGAIN
RUN ERROR

GOOF AGAIN

E -195959
RUN ERROR

45107 EXAMPLE 13

X==.0000000001% Y=1000000000% PI=3.1415926536

SET(SPD=2.)%
SET(SPD=3.1%
SET(SPD=4.)%
SET(SPD=5.)%
SET{SPV=6.)%
SET{SPD=T.)%
SET(SPL=8.1%
GOTO({N.PROB)

2=SQRT(X)
W=LOG(X)

I=YaY2Z A=EXP(1)
B=AKCSIN(1-1000#X)

C=CO0S(Yns2)

D=.3#YZ ENTER(POWER)X)D)

E=TAN(PL1/2)%

PRINTC E >E

PRINT<GOOF AGAIN >X% GOYO(,SPD)

GOTG(START)

BRLESC
C906

FORAST Fé62
MeJoROMANELLI

LOG X NEG. MAY.23,63 C906

EXP BIG X MAY.23,63 (906

ARCSIN [+

MAY.23,63 (906

SINCOS N S MAY.23,63 C906

LOG X NEGe. MAY.23,63 (C906

30 12
NEG. SQRT

MAY.23,463 C906

45107 EXAMPLE 13

MeJ.ROMANELLI

MeJ.ROMANELLI

M.J.ROMANELLI

MeJ. ROMANELLI

MeJo ROMANELL]1

M.J.ROMANELLI

FIGURE 28.

45107

45107

45107

45107

45107

45107

EX
EX
EX
EX

EX

EX

23 JULY,63 PAGE

™ ~N OV W N e

11
12

262-10000000000-09

0000001
265 14426950409 19

0000002
269 10000001000 1

0000003
272 15915494309 18

0000004
2905-10000000000—~09

0000005
0000006

In EXAMPLE 11, the program was designed to compute and print a table of

differences corresponding to the given X. and f(Xi) where i =1,2,...,20;
i.e., it was designed for a table with precisely twenty "rows". Further,

internal storage space was reserved for the complete table of differences.

In this example, we will design another program for a solution to the problem
of EXAMPLE 11, to introduce two new concepts: the program will be designed for
a table of "variable" length, i < 1000; internal storage space will be reserved

for the given data and only twoc rows of differences.

To provide for reading and recording a "variable" amount of data, the

=

READ statement specifies the maximum number of quantities to be read and re-
corded and the variable amount of data is terminated with a blank card. The
computers consider a READ statement fulfilled whenever the specified number of

been read and recorded or whenever a blank card is encountered.

o
[a]
ot
l_J-
ct
’.J-
(0]
oy
)
<
D

1Y
Y L

(If a blank card is encountered as the first card, it is igno ored). Correspond-

ing to any READ statement, the precise number of quantities and the precise

3

umber of cards that were read and recorded is made available to the programmer.

In particular, after a READ statement has been executed, the number of guanti-

ties that were read and recorded is available in integer form in index 09.

Similarly, the number of cards that were read and recorded is available in

integer form in index 08. Each subsequent READ statement erases the previous

integers in 08 and 09 and consequently the existing integers in 08 and 09 at
any given time correspond to the latest READ statement that was executed.

(Blank cards are not included in the integer counts).

To instruct the computer to read and record the given X,, i =1,2,...,NX

where NX < 1000, we write
READ(1000)NOS.AT(X1)% NX = 09

The above assumes that the Xﬁ are in standard form, six per card. If NX <99,

then the Xi are terminated with a blank card. If for example, there were 997 X's,

]._I
Q
-~

X997 would be recorded in the first field of the 16Tth card, and even though

the remainder of this card were blank the computer would substitute zeros for

the values of X and X ! The integers in 09 and 08 would be

998° X999 1000

respectively 1000 and 167. The statement

Y -
1N4a =

nNo
vz

tells the computer to assign a "value" to NX equal to the existing integer in
09. Since "09" is an absolute machine name, the integer 9is not the value
assigned to NX, rather the "value" in index 09 is assigned as the existing
value of NX. We wrote the NX = 09 statement immediately following the READ
statement so that we will have in NX the number of X's read. After th
are read and recorded, we can instruct the computer to check if the number of

X's and f's read are identical. To read and record the f(Xi) we write

READ(1000)NOS.AT(F1) %4 NF = 09

To include the program check we write

7 S, =

IF-INT(NX = NF)GOTO(WORK)%
This conditional statement is immediately followed by a PRINT statement which

identifies and prints the number of X's and the number of ffs in the event

there is a discrepancy.

To determine the internal storage space required for the four differences
of a given row, we illustrate schematically below the quantities required for
the computation and printing. We plan to compute a row of differences and print

that row immediately.

P1 P2 P3
TTTTATTTITTRTTTTTTR
1 1 2 1 3 1
£(x;) Bt Bt S
I - o o o S i - lL ______ .i_;;;saal
1
R) 2 _ L
| X, £(X.) ALV A2 VA b A
L= : T EEEEEY
D1 D2 D3 Dl

108

If we let D1,D2,D3 and D4 be the names of the four differences in the ith
row and P1,P2,P3 the names of the required differences in the (i-1)st row,

we can write

DL = F,I - F,(I-1)
D2 =D1 - P1
D3 = D2 - P2
Dk = D3 - P3

where we prepare in advance for the computations in the next row by writing

Pl =D1
P2 = D2
P> =D>

so that these quantities are available for the computations of the next row of
differences. (We will make special provisions for printing rows with un-

4-1. £
L. 1

defined differences)s. We have used the above notation in the

illustrated in FIGURE 26,

109

START WORK
READ Yes| PRINT
— - | X = NF ?) e s
X, , 1 =1,2,...,NX; NX <1000 column identification
1 - No
f(X:L\’ i=1,2, ,NF; NF « 1000 and a blank card
[¥
/‘__-\ PRINT & 3 = 1
QI.PROB)‘ IDENTIFY
- v
— - X =
PRINT:
NF =)
i X.; £(X.)
—Jon
)
i=1+1
/7 N\ AATT
(N.PROB m—tod. 11 o
— Yes
GENFPR NXTI 4
PRINT PRINT bl = £(X;) - £(X;)
i; X.; £(X.); & . .
38y B85 i; X5 £(X)); & D2 = D1 - P1
four 4ifferences {2 1) A3 PPamarnna i —~ A
+ AL bt deial S i _L-..L} ULLLICLICTIHCTO Uj = J_)d - Y2
A 1 D4 = D3 = P3
I I '
| I No Pl = D1
| Yes is 4 7 la P3a = D2
DZ _ T2
) = U)
FLOW CHART FOR EXAMPLE 14
FIGURE 29.

cTT

23 JULY .63 PAGE
PROB €900 M.J.ROMANELLI 45107 EXAMPLE l4.

1
1
BLOC(X-X1000)F-F1000)D1-D4 2

START READ{1000)INCS.AT(X1)%E NX=09% READ(1000)INOS.AT(FL)Z NF=09 3
IF-INT(NX=NF) GOTO(WORK} 4

5

PRINT-FORMAT(SEEL.) -<nUMBER OF X,S = >NX
PRINT-FORMAT(SEELl.)-<NUMBER OF FyS = >NFZ¥ GOTO(N.PROB) 6
WORK PRINTLC I Xyl Fol LDELI 2DELI 3DELI> 1
CONTL 4UELI>E ENTER(PRINTBIX SET(I=1)% 8
PRINT-FORMAT(SEELL)—(L1}X,1)F,1 9
AATI COUNT(NX+1)IN(IIGOTO(NLLINE)T GOTO(N.PROB) 10
N.L INE D1=F4I-F,([-1)% D2=D1-PLE 03=0D2-P2% D4=D3-P3 11
Pl=p14& P2=02% P3=D3% [F-INT(I>4) GOTO(GENPR) 12
PRINT-FORMAT(SEEL)-(I)IX1)F,1){I-1)NOS.AT(DL1)Z GOTU(AATI) 13
GENPR PRINT-FORMAT(SEELl.)—(I}Xel)F,1) (4)NOS.AT(DL)ZE GOTO(AATI) 14
SEEl. FORM(4-5)3-2)1-1)12-1-7)3-2)1-6)2 15
END GOTO(START) 16

93000000 00 95000000 00 98000000 OO0 10000000 01 12000000 Ol 12500000 Ol
13000000 01 13500000 01 14000000 Ol 15000000 01 16000000 0Ol 16500000 Ol
17000000 01 17500000 Ol 18000000 O1 18500000 O1 19000000 01 19300000 Ol
19800600 1 20000000 01

59783000 00 58168C00 00 55702000 00 54030000 00 36236000 00 31532000 00

26750000 Q0 21901000 00 16997000 00 70740000-01-29200000-01--79120000-01
-12884000 00-17825C00 00-22720000 00-27559000 00~32329000 00-35153000 00
-39788000 00-41615000 00

MAY.Z23+63 BRLESC FORAST Fé62

PROB (906 M.J.ROMANELLI 45107 EXAMPLE 14. *

I Xol Fyl IDELI 2DELI 3IDELI 4DELI 0000001

1 . 9300 -5978

2 - 9500 «581l7 - .0161

3 « 9800 «5570 - .0247 - .0085

4 1.0000 «5403 - 0167 .0079 <0165

5 1.2000 «3624 - L1779 - .1612 - .1692 - .1856

6 1.2500 «3153 - .0470 «1309 «2921 «4613

7 1.3000 22675 - 0478 - .0008 - 1317 -~ .4238

8 1.3500 «2190 - .0485 - .0007 .0001 .1318

9 1.4000 «1700 - .0490 - .0005 .0001 .0000
10 1.5000 0707 - .0992 - .0502 - .0496 -~ .0498
11 1.6000 - .0292 - .0999 - .0007 . 0495 .0991
12 1.6500 - .0791 - .0499 .0500 . 0507 .0013
13 1.7000 - .1288 - .0497 .0002 - .0498 - .1l006
14 1. 7500 - .1783 - .0494 .0003 .0001 - 0499
15 1.8000 - .2272 - .0489 - 0005 . 0002 .0000
16 1.8500 = 2756 - .0484 .0006 .0001 - .0001
17 1.9000 - .3233 - .0477 . 0007 .0001 .0000
18 1.9300 - .3515 - .0282 «0195 .0188 .0186
19 1.9800 - .3979 -~ .0464 - .0181 - .0376 - .0563
20 2.0000 - .4102 - .0183 .0281 .0462 .0838
21 . 0000 .0000 <4161 «4344 « 4063 -3602
22 . 0000 . 0000 .0000 - .4162 - .8506 ~1.2569
23 «0C00 .0060 .0000 .0000 <4161 1.2667
24 « 00060 .0000 .0000 . 0000 .0000 - .4162

FIGURE 350.

L .- [< I, P
1IeQ 10U exiraneou

1

i T 2 43 4 — 2 .
dines 1n uiae tabdie, 1.c.,

]
)

1
correspond to I = 21,22,23 and 2k. To eliminate these, we could have used

a second terminating condition, namely:

IF (X1,I = F1,I = 0)GOTO(N.PROB)
\ ’ ’ / \ 7

This should be inserted after the PRINT statement on line 9 or on a card

argument and for which more than one result may be produced. As in the class
of single valued functions of one argument, most of these functions require

floating-point arguments and yield floating-point resul
be explicitly stated in the descriptions which follow. Arguments for the tri-

gonometric functions and results for the inverse trigonometric functions are

GIVEN: A=-2
B= 3
cC= bks
D=-6.3

REQUIRED: Compute, print and identify the following:

SA = sin(A) WC = whole part of C

CA

It
Q
O
0

—~
b=
p—

floating-pt representations
FC = fractional part of C

4
C
BC = B” WI = integer form of C 7
@ = arcsin(SA) FI = integer form of FC Y integer representations
and arccos(CA) NI = integer form of D J

(9]
=
11

W = arctan(B/C) fleating-point of NI

e~

Hy
}_J
(@]
[
ct+
o
3

o

o]
o+
H
o)

ie]
21
(0]
w
a
2]
ct
o]
ct
’_‘
[e]
o}

The fiow chart for this example is shown in FIGURE 31.

115

START

SA = sin(A)
CA = cos(A)

A=-2

B= 3

C= L5

D=~6.3
7N\

W = arctan(B/C)

FC

C1

Print and Identify :
SA; CA; THETA; BC;.W; WC; FC; CI
WI; FI; NI
‘n
Print one blank card

petl— e et

Print (standard

N.PROB SA; CA; BC; THETA; W;

form)

WC; FC; CI

The statement
ENTER(SINCOS)A)SA)CA)
tells the computer to compute both the sine and cosine of A and to assign
the results tc SA and CA respectively.
The statement
ENTER (POWER)B)C)BC

result to BC. Since the logarithm function is used to obtain this result,
B > 0.

The statement

tells the computer to determine the angle THETA whose arcsin and arccos are

respectively SA and CA.

(-x < THETA < x)
The statement
ENTER (ARTAN)B)C)W

tells the computer to determine the angle W whose arctan is B/C. Qﬂtg W< 7).

m.
411

[}
n
ct
o
(-'.
D
£
D
=]
ct

ENTER (WH.FRA)C)WC)FC

tells the computer to separate the floating-point quantity C into its whole and
fractional parts, assigning the whole part to WC and the fractional part to FC.
Both parts are recorded in floating-point form.

The statement

ENTER (CVFTOI)C)WI

tells the computer to convert the floating-point quantity C to integer form,

T
assigning the result to WI. (For rounding purposes, the quantity 1077 is first

117

The statement
ENTER (CVITOF)NI)CI

tells the computer to convert the integer quantity NI to floating-point form,

assigning the result to CI.
The statement

ENTER(PRINT B)
tells the computer to print one blank card.

The statement

tells the computer to se
tells The corn ter TO se

t
ot
g
[0
O
o
o]
[o7)
(¢}
Q
3
t
[
H
o]

standard card formats, the successive cards produced contain serial identifi-
cation in columns T7 through 80, (output card count). The serial count

commences at ane with

he first output card produced and is advanced by one

with each successive card produced until either the count reaches 9999 or when

restored to zero by the above ENTER statement.

Non-standard formats may also include the output card count, however, it
must be specified in the format. We used a special format for the integer

rmat

hat are to be printed. The fo
K FORM (L-L)k-L)h_-L)o

is of the form

e mam 2and ommman] L e e m b A
b all dIlveger alll 15 LU be I'e-
presented in integer form in the four columns allocated, the units position

on the card corresponding to the fourth column. The characters specified with-

the < and > of the PRINT statements su

118

=3
u
[
o]
[ve]
s
(o]
ct
o
[}
n
ct
o}
ct
:
E
M
fos!
ct

fied in the format; i.e., correspon
PRINT-FORMAT(K) - <WIb=b >WI <LbFI>----

WI is first recorded in columns 1 and 2, then a blank in column 5, the
equality in column 4, a blank in column 5 and then the integer in columns
6,7,8 and 9 with insignificant zeroes suppressed, (i.e., replaced by blanks).

Next, blanks are recorded in columns 10 and 11, FI recorded in 12 and 13, etc.

The program, input and output for this example are listed in FIGURE 32.

119

PROB C906 M.J.ROMANELLI 45107 EXAMPLE 15 3 JULY.63 PAGE }

START A=-2% B=3% C=4.5% D=-6.3 2

ENTER (SINCOS)A)SA)CA)ZR ENTER (POWER)B)C)BC 3

ENTER (ARCSC)ISA)CA)THETAZ ENTER (ARTAN)B)IC)W 4

ENTER (WH.FRA)CIWC)FCZ ENTER (CVFTOIIC)IWI S

ENTER (CVFTONFCIFINZ ENTER (CVFTOIIDINI 6

ENTER {CVITOF)INIICIZ 7

PRINTCSA = >S5AL CA = D>CA< THETA = D>THETA 8

PRINT<BC = >BC<L W = >W < WC = >WC 9

PRINTCKFC = >FC< CI = >CI 10

PRINT-FORMATIK)-<WI = >WI< FI = >FI< NI = >NI 11

ENTER{PRINT 8)% ENTER(ZEROCC) X 12

PRINT{SA)ICA)THETA)BCIWIWC)IFCICIZ GOTO (N.PROB) 13

K FORM (4-4)4-4)4-4)2 14

END GOTO (START) 15

MAY.23,63 BRLESC FORAST Fé62

PROB C906 M.J.ROMANELLI 45107 EXAMPLE 15 »

SA = -90929743 CA = 41614684 THETA = -20000000 1 0000001

BC = 14029612 3 W = 58800260 WC = 40000000 1 0000002

FC = 50000000 Cl = -60000000 1 0000003
Wl = 4 Fl = Nl = - 6

=90929743 ~-41614684 —-20000000 1 14029612 3 58800260 40000000 1 0000001

50000000 -60000000 1 0000002

FIGURE 32.

EXAMPLE 16.

In many problems, the given functions are not always known analytically
and in lieu of explicit analytic definitions discrete tabular data is given.
Similarly, as illustrated in the previous examples, many solutions cbtained
from the computers are expressed in tabular form. Hence, in many problems
conventional interpolation is often desired. This example is designed to
illustrate how the ENTER statement provides for interpclation. The statement

has the general form

where D.D.IN is an abbreviation for divided difference interpolation. As many
as 8 parameters may be specified to describe the particular interpolation
desired. It is assumed that a table of discrete values, X, and f(X,), is

monotone

D H
>
jo
=
[0}
e
ja]

recorded in internal storage, where i = 1,2,...,tpt-and th
increasing or monotone decreasing sequence. ¥ It is further assumed
tabular values are uniformly spaced in internal storage. (This does not mean
that Xi+l = Xi + AX, the uniformity refers to the space allocation in internal
storage). Further, the uniform spacing of the f(Xi) may indeed be different
from the uniform spacing of the independent wvariable, Xi' In general, if we
want the computer to perform particular interpolations, we must specify the
pertinent information. The parameters which follow the ENTER(D.D.IN) tell

the computer the specific information that is required for the interpolation.

The meanings for the parameters are as follows:

X 1is the name of the argument, i.e., we want the interpolated value

for f(X);

FX 4dis the name of the result, i.e., the result obtained is assigned

as the existing value of FX and hence future references to this

¥ Since divided differences are used, Xi £ Xi+l’ for all 1i.

121

F1

tpt

is the name of the first entry in the table of the independent

is the name of the first functional value in the table;

is an integer which specifies the number of points in the table,

i.e., the maximum value of i;

is an integer which specifies the number of points to be used in
the interpolation, i.e., if n = 2, linear interpolation is

desired, if n = 3, parabolic interpolation is desired, etc.,

is an integer which specifies the uniform spacing of the Xi in
internal storage;

is an integer which specifies the uniform spacing of the f(Xi) in

internal storage.

Note that the dependent and independent tabular data need not have the same

uniform spac

if ix = if
if ix = if

the string o

the integers

ing. (The last three parameters, n, ix and if may be omitted only
t

=1 and 5).
Slis J7

= 4 i nn =

eneral, the lower case letters listed in

f parameters of ENTER statements refer to integer values. As such,

may be expressed explicitly or may be exXpressed as the existing

values of indices provided the index name is preceded by the mandatory comma.
If for example, the total number of points in a table is 92, one may literally

write 92 in

the parenthesis corresponding to tpt. As an alternative, if one

used the name J as an index with existing value 92, for eXample, SET(J = 92),

=y im t+the 7na
< PR A4l Lilic pa

-

[

=
\%;
N

For each Yio determine f‘(_yi) using 2,3,4 and 5 point inter-

Print and Identify: x; f(x) 2 pt; f(x) 3 pt; £(x) bpt; and

f(x) 5 pt. where x corresponds to the Yy

-]
AV]
N

2T

INTERP

Use (j+2) ot.

BEGIN
X ¥y = L9753 Print Heading a2
J s = Y5 = 1.0001 ™ Identification >~ 1i=0 \’ d=0
f(x.]
(XJ) yj == (I C85
J=1,2,...,10 vy = 1125
y5 = 1.3
ERROR SR res
‘) R
Print 5 N.PROB -—yg— 1<5 7
X = s esessssens VT A
IS outside range

interpolation

"o determine f(y, _)
o determine Yinn
i
J=3+1
Yes
j<l¥"
No

DIVIDED DIFFERENCE INTERPOLATION

LINEAR
F(X)apT

PARABOLIC

F(X)3PT

CUBIC
F(X)LPT

QUARTIC
F(X)SPT

FLOW CHART FOR EXAMPIE 16.

FIGURE 33.

Vieps flyg,q)20%;.

1y,)5t

-
-

One other general remark concerning the interpolation function is tha
extrapolation will be performed provided that the point is not "too far"

outside the given range. Indeed "too far" means that the point must lie

1~ PON £ 41 4+ Al
L vab

. TR | T " Nt A 3l :
within "one interval” at either end of the e. myl.:_ul'tly th

1A
pE
extrapolation for the point X will be performed provided
< < +
ti+ X tit (tit t
or at the other end,

X, - (%, - %) <x<x

for monotone increasing X,. Similar conditions hold for extrapolations for

monotone decreasing X, .
i

The program, input and output for this example is listed in FIGURE 3L,

125

oct

, _ 23 JULY,63
PROB C906 ROMANELLI C.L. 45107 EXAMPLE 16

BLOC (YLI-Y5)1IF2-IF5)X1-X20
SYN {F1=X2)

BEGIN YLI=4973% Y2=1.0001% ¥3=1.085% Y&4=1.125% Y5=1.32
PRINTL DIVIDED DIFFERENCE INTERPOLATION>
ENTER(PRINT B)
PRINTK LINEAR PARABOLIC cuBIC QUARTIC>
ENTER(PRINT B)
PRINTKL X FUX) 2PT F(X) 3PT F(X) aPT F(X) SPT>
ENTER(PRINT B)% SET(1=0)

RSJ SET(J=0)

INTERP ENTER(DeDINIYLyI)IF2,J)X1)IFL)10),J42)21)2)

COUNT(4)INUJIGOTOUINTERP)
PRINT=FORMAT{H)=(YLlsI) (4INOS.AT(IF2)
COUNTH{S5)IN(IIGOTO(RSJIE GOTO(N.PROB)

H FORM(12-1-7)3-2)1-1}12~1-9)3-3)1-4})2

X1 DEC (.95).81342).96).81919).98).83050)1).84147)1.02).85211
CONT{1.05).86742)1.06).87236)1.09).88663)1.11).89570)1.13).90441

ERROR PRINTC X IS5 PROBABLY OUTSIDE THE RANGE >% GOTO(N.PROB)Z

END GOTO(BEGIN)

PAGE

Let

MAY.23963 BRLESC FUORAST Fé62

PROB C906 ROMANELLI C.L. 45107 EXAMPLE 16 *

DIVIDED DIFFERENCE I[NTERPOLATION 0000001

LINEAR PARABOLIC cuslcC QUARTIC 0000002

X F(X) 2PT F{X) 3PT FIX) 4PT F(X) 5P7 0000003
«9730 +826541 «826576 «826578 «B826579
1.0001 .861523 «841524 841524 «841524
1.0850 «884252 884309 .884308 .884309

l.1250 «902233 « 902266 «902266 « 902267
RUN ERROR D.D.IN MAY. 25,63 C906 ROMANELLI C.L. 45107 EXA 286 13000000000 1

+UJ04+USUJIV3ILUK3VMV43K+45NV4TLU/ +NSVTMT2ZMUTSMVUSVNONNY ED-DS
X IS PROBABLY OUTSIDE THE RANGE 0000004

FIGURE 3L4.

A study of the program for this example will illustrate some new conce
First, we could have used the general READ statement to record the given
tabular data in internal storage. However, to illustrate another means of

recording data in internal storage we have used the
DEC order-type word.

Note you will find omr line 17, X1 in the LOCATION columns and DEC in the order-
type columns. Beginning in column 11 we have written the numerical values that
correspond to X1, f{(X1), X2, £(X2), etc. Each numerical value is separated by
a parenthesis. These numerical quantities are recorded in consecutive spaces
in internal storage. The first numerical value, .95, is associated with the
name X1 recorded in the location columns. This fact alone does not establish
X2, X3, etc. as valid names. To associate these quantities with particular
names for future references we have used BLOC and SYN statements. In the BLOC
statement we wrote (X1 - X20) to reserve space and establish X names for these
twenty quantities. In the SYN statement we wrote (F1 = X2) indicating that

the second numerical quantity, .81342 was to be associated with either name,

X2 or F1. Note, also, that under this ordering and arrangement, the X's are
two units apart in internal storage. Likewise the corresponding functional
values are two units apart in internal storage. These concepts permit us to
establish the data and names required for the interpolation. We will make
reference to X1, and F1 and specify that the tabular data is two units apart

both for the X values and F values.
IF2 - IF5 for the interpclated functional values. We have
also used a non-standard format

H FORM(12-1-7)3-2)1-1)12-1-9)3-3)1-L4)2
for the entries in the output table. The form (12-1-7) specifies that the
numerical value of Y1,I exists in internal storage in floating-point form, the
external form is to be printed with a decimal point after one digit an

d
columns are to be used for entire external representation. The form (3-2)

128

The form (1-1) specifies that the preceding forms are to be used just 1 time.

This was inserted since we will indicate repetitions of another form and

repetitions commence with the form immedilately foilowing the previous re-

1
petition form. In the above example, the repetition from (l-l) applies to the

(12-1-7)3-2 whereas the (1-4) repetition form applies to the (12-1-9)3-3).

The form (12-1-9) is similar to the initial form (12-1-T), the only difference

is in the total number of columns to be allocated for the quantity.
The form (3-3) indicates 3 spaces.

The form (1-4) indicates that the total form (12-1-9)3-3) is to be used for
4 consecutive quantities, namely the four interpolated functional values,

IF2, IF3, IF4 and IF5.

The form)2 terminates the format definition.

[
N
O

This example illustrates how the ENTER statement is used to solve a
crrotom AFf n JArnear enna+iAane ITn n o 1imlrnAatme Tvri ma+riv mnatat+dAn +MNMa crirctam
DJ [V § R 11 Lol QAL bkiutu VAL JLLO A1l 1l LALLIDLIN/ WILLO o = ll MICL UL LA Livuva vl ULL, Wil (=] o2 LTLUL
is expressed as

AX = B
or
1

a a a a X b

11 712 713 1n \ { 1 1

a a a a X b
21 22 23 2n 2 2

a a a *ttoa X b
\ nl n2 n3 nn } \ n \ n

The problem in general is to determine the X .,Xn which satisfy the

l’X2"'
above system when the elements of A and B are given. To use the convenient

FNTFR statement to solve suce
state CO S01lve suc

PAEY IS AR 0 ¥ P PRV v

P
o
]

[oT]

in consecutive spaces of internal storage by rows. That is, the prescr

order is as follows:

all’al2’al§""’aln’bl’a2l’a22’°"’a2n’b2""""ann’bn .

One should reserve spaces for the n X (n+l) consecutive given elements, the

A and B, by using the BLOC statement. Here

= =7

one may define a linear BLOC, say

AN A € o o NY L aa R AN N A(,, o ? kU
Al - Ajn x (n+l)y or a two dimensional array, Al,l - Ajn , n¥ly . For
example, for a system of four equations in four unknowns one may choose the

5. In either

u
the given elements. The ENTER statement has the general form

[}
N
Q

where:

S.N.E. is simply an abbreviation for Solve Normal Equations;

A is the name of the first given element, (a

117

n is an integer (or name of an integer) which specifies the number of

unknowns

.
WWwliloas

C is optional and if specified is the name where the result of the first

unknown is to be recorded, i.e., generally the name X1 where the

solution is to be recorded. The successive results are recorded in

consecutive spaces in internal storage. The identical results are

available elsewhere, these are explained below.

D is the name of the determinant of A This name is optional, and if

stroys the given
o o

A and B. In particular, the original A is replaced by the inverse of A, and

B is replaced by the solution, X, which satisfies the given system.

Hence one

need not specify C since one can make references to the solution by referring

to the names of the original B's. However, if one wants to specify D and not

C then the ENTER statement must be written in the form

ENTER(S.N.E.)A)n})D

To illustrate, we chose the simple system of four equatio
with solution X1 =1, X2=2, X3 = 3, X4 = L.
GIVEN:
X1+ X2 + X3 + Xb =
XL +2%2 + X3 + Xb =
X1+ X2 + 3%3 + Xb =
X1+ X2 + X3 + Wxh =

151

S

in

Determine, identify and print the X1,X2,X3 and X4 which satisfy

the above equations.

Note that the given elements in the prescribed order by rows are:
1)1)1)3)10)1)2)1)1)12)1)1)3)1)16)1)1)1)4)22
To reserve space in internal storage for the given elements and the
solution, we write a BLOC statement

BLOC(AL,1 - AL,5)X1 - XU4)

Al,1 DEC (1)1)1)1)10)1)2)1)1)12)1)1)3)1)16)1)1)1)k)22

The BLOC statement above provides for reserving the consecutive space for the

given elements and solution. The "Al,1 DEC" provides for recording the given
system in internal storage in the reserved space. The flow chart for this

example is given below.

—f==f—==%{?ﬁTER(S.N.E.) PRINT:
: X1 =» X2 =, X3 =~ Xb =
{ X1 =~ X2 = X3 = X4 =/
A
B
N.PROB

FLOW CHART - EXAMPLE 17

FIGURE 34,

N

STAR

to START with the

ha
118

Troe
w<o

Ty

also that will

emphasize that if
program) then the
prints c

program and outpu

anA

T it is assumed that the given A and B are recorded inter-
cribed order. This is indicated on the flow chart just prior
box containing A and B appended with a broken line. Note
print and identify the solution twice. This is done to

one specifies a place for the solution (as we do in our

solution results are available in two places. The two
tao the solution references in the two distinct places. The
t for this example are listed in FIGURE 35.

133

Hel

START

Al,1

PROB €906 ROMANELLI C.L. 45107 EXAMPLE 17

BLOC (Al,1-A4,5)X1-X4
ENTER({S.N.E.)Al,1)4)X1)DA
PRINT-FORMAT[K)-<X1

»>X1i<

X2 = >X2<

X3

CONTKL X4 = >X4< DET A = >DAX ENTER(PRINT B8)
X2 = >A2,5<

PRINT-FORMAT(K)-=<X1 =
CONTKL X4 = >A4,5< DET A =
FORM{12-2-4)1-4)12-3-6)2

DEC (L)D)1)1)10M1)2)1)1)12)1)1)3)1)16)1021)1)4)22

END GOTO(START)

MAY.23,63 BRLESC FORAST Fé62
PROB €906 M.J.ROMANELLI 45107 EXAMPLE 17

Xl =

Xl =

le X2 = 2e X3 = 3.

l. X2 2a X3

3.

]

DAL,

5<

X4

X4

= 4.

= 4,

FIGURE 35,

>DAZ GOTO(N.PROB)

DET A

DET A

[}

23 JULY,63 PAGE

X3 = >A3I 5

N 0 N O N e

o

EXAMPLE 18.

In this example we will illustrate another means of obtaining the solution

to the problem of EXAMPIE 17. Since the A matrix (th

B B 8101w

e coefficient matr
symnetric, less storage space is required and computation time is proportionally
diminished. For low order systems, the space and time savings may not be

appreciable; however, for high order systems, both space and time savin

be appreciable

Similar to the general case; the symmetric case also requires that the
given elements be recorded internally in consecutive spaces by rows. In parti-

cular the required order is as follows:

The symmetry condition is specified in both the BLOC statement and the ENTER

statement as follows:
BLOC(Al,1 - AL,5/sY.)X1 - X4

ENTER (SY.SNE)AL,1)4)X1)D

Again, as in the general case, in obtaining the solution, the original A matrix
is replaced by the inverse of A; however, the solution is recorded only in the
specified place X1, and is not recorded in the space previously occupied by the
augmented vector as in the general S.N.E. The flow chart for this symmetric

case is similar to that of the general case.

135

START

ENTER(SY.SNE) PRINT:
X1 =~ X2 = X3 =au XUt =nv

y
(N.PROB)

FLOW CHART FOR EXAMPIE 18.

FIGURE 36.

The program and results for this example are listed in FIGURE 37.

'__J
N
(@)Y

LeT

START

Al,1l

23 JULY,63 PAGE

PROB C906 M.J.ROMANELLI 45107 EXAMPLE 18
BLOC (Aly1-A4,5/85Y.)X1-X4

ENTER(SYJ.SNE)AL,1)4)X1)D

PRINT=-FORMAT(K)-<X1 = >XI< X2 = >X2< X3 = >X3
CONTKC X4 = >X4< DET A = >D¥ GOTO(N.PROB)
FORM{12-2-4)1-4)12-3-6)2
DEC (D1L)IDI1LIL0)2)L)1I12)3)1)16)4)22)
END GOTO(START)

MAY.23,63 BRLESC FORAST F62

X1

i

PROB C906 M.J.ROMANELLI 45107 EXAMPLE 18

l. X2 = 2a X3 = 3. X4 = 4. DET A = 6.0

FIGURE 3T7.

EXAMPIE 19,

This example illustrates the ENTER statement which applies Simpson's rule

S.INTE is an abbreviation for Simpson integration;

F is the location name where the integrand f(x) is explicitly
defined;
Since the process is designed to provide the approximation for

rbitrary f(x), it is the responsibility of the programmer to

N==7 27

e o~ e ~
he statement or state-

define the f(x) of interest. Further, t
ments which define f(x) must be terminated with GOTO(S.I.FF).

This enables the computer to evaluate and weight the integrand

2
e
]
t
3

s the name of the integrand, f(x);
o 7 Ay 7

k.
.,
v

is the name of the resulting approximation;

name of the lower limit, B the upper limit;

= >

e e e
n
ct
oy
o

is the name of a "relative error bound;

The program is designed to obtain the approximation with a minimum number
of evaluations of the integrand. Successive approximations are obtained using

successively smaller AX until

> 1023.

When the latter occurs, a "run error" print includes the numerical value of

’ I(Av) _ ﬂ&\ I
l \oa A5/ |
I I(AX) |

(For approximations which tend to zero, defining the original integral as a

sum of integrals may suffice to produce a satisfactory approximation).

GTVEN -
ATV Ly o

L

REQUIRED:

TTan O v o ~m MAatl, -3 0 At mem] Toade o e
Use ollpsorl Meunoa ol NNumericdal LIILeRI'c

for:
IN(2) with an associated E = .0001 ;
7 "o " E = .0001 ;
T "o " E = .000001 ;

=
N
\O

A =0 _| Enter Simpson Print Enter Simpson Print
e | ———— e~ -~
B=1 Integration 1n 2 = Integration n =
e = .0001 i i € = i * c =
! | | |
b Evineo I { c THIRD
1 —
£(x) = — F(x) = —— e = .000001
R 1l +x 1+ x
D Y
/’-——\ Print 5 * Enter
N.PROB _) £(y) = S a
T = Simpson
\ l+y
SN—r € = — *|Integration

EXAMPLE 19.

Note the "broken lines" to the evaluation of the integrands and the "solid" line

from the evaluation back to
because the programmer does

Recall that we specify this

the Simpson integration.

140

We used the "broken lines"

connection in the ENTER statement.

not write an explicit statement which says GOTO(EVINGD).

.....

does write GOTO(S.I.FF).

Note the solid lines from the "integration boxes" to the "print boxes"

which are used to indicate that the computers go to the statement immediately

following the ENTER statement after the ENTER statement is completely executed.

128 £ wiill asiv.L s oJ

Hence, evaluation of an integrand associated with an ENTER statement should

not immediately follow the ENTER statement.

The program and output for this example are listed in FIGURE 39.

141

cht

START

EVINGD

SECOND

C
THIRD

23

PROB C906 M.J.ROMANELLI 45107 EXAMPLE 19

A=0% B8=1% EPS5=.0001
ENTER(S.INTE)YEVINGD)X)FOFX)LN2)A)B)EPS

PRINTKLN(Z2) = >LNZ2 < EPS = >EPST GOTO(SECOND)
FOFX=1/11+X)2Z GOTO(SI.FF)
ENTER(S.INTEICIX)FIPI)AIB)EPS

PI=4=pPl2% PRINTKL PL = >PIKL EPS = >EPSE GOTO(THIRD)
F=1/(1+X%X)% GOTO(S.I.FF)

1=,000001% ENTER(S.INTEID)Y)HIKIA)IB)IZ

K=4#K%Z PRINTLC PI = >K< EPS = >2% GOTO(N.PROB)
H=1/(1+Y2Y) & GOTO(S.I.FF)

END GOTO(START)

MAY.23,63 BRLESC FORAST Fo62
PROB C90&6 M.J.ROMANELLI 45107 EXAMPLE 19

LN(2)
PI
Pl

69314765 EPS
31415925 1 EPS
31415927 1 EPS

10000000-03
10000000-03
10000000-05

FIGURE 39.

JULY,63 PAGE {
2

3

4

5

6

7

8

9

10

11

12

*
0000001
0000002
0000003

EXAMPLE 20.

This example illustrates how the ENTER statement is used to obtain a

numerical solution of a system of first-order, ordinary differential equations,

az yi = fi(t)yl(t)) y2(t))-")yn(t))

At) =y, i=0,1,2,...,N.
yl(O) ylo) sl »
The Runge-Kutta-Gill method is applied to obtain an approximate solution. The

statement has the general form:

ENTER (R.K.G)At)n)EVDS)Y)Y)Q

reviation for Runge-Kutta Gill;

IOt is the name of the incremental value of the independent variable
The numerical solution is determined at discrete values of the
independent variable, t. i.e., when initial conditions are
specified corresponding to t = t_, the solution, yi(t), is
determined at t = to + At. The computer replaces the given
values, yi(to), with the new values, yi(to + At). These new
values then serve as the given values for determining the
solution at the "next" discrete t, namely at t, + 2At. Each

subsequent entry produces the solution at the next t;
er (or name of an integer) which specifies th

of equations in the system, i.e., n = N+ 1 ;

. 1 1 .
The method requires a "zeroth" equation
g8
o} dt

which is treated in the same manner as the other equations.

143

&

[}

adjusting the value of the independent

1

variable as required by the method.

e name of the location where the derivatives are explicitly

=
=
]
o
]
(S =
(@]
(-+-
oy
¢
9]
e

mpson integration of the previous example, this
is designed for arbitrary fi, hence, again it is the
responsibility of the programmer to write the statements which

evaluate the fi of interest. These statements must be designed

to record the evaluated derivatives in consecutive places called

. Further, this sequence of statements must be terminated

e 1 +h
4 Ll

)

z
i

GOTO(R.K.GD). Specifying the name EVDS in the ENTER statemen
terminating this evaluation of the derivative
enables the computer to evaluate and weight the derivatives as many

u
times as required by the method.

is the name of the first of the N+l functional values (or equiva-
lently, the name of the "zeroth" functional value);

To avoid confusion in (n) and (N+1) and the inclusion of the

n
j&L

i
dependent variable a f the (N+1) functional values and deri-

wn
Q
)
o]

vatives it is suggested that the system be considered and identi-

fied as follows:

dy2

— ! =f
at Y2 2
a

Tn_ ool
t n n

14k

that the

quantities it is =
programmer use the following or equivalent BLOC statement

BILOC(Y - ¥Yn)Y' - Y' n)Q - @ n)

As stated above, Y is the name of the first of the (N+1) consecutive functional

values. These correspond to the names of the given conditions and correspond
ingly to the names where the resulting values will be recorded.
Y' is the name of the first of the (N+1) consecutive derivative values;
It is in these places that the EVDS statements instruct the computer
to record the derivative values. As identified above, y' =1
as to & -1
corresponds to 3= = 1.
Q is the name of the first of (N+1) quantities that are required for
intermediate values in the computations.
For subsequent steps, i.e., for solutions at to + kAt where k =1,2,3,...,
ete., it is not necessary to re-specify the parameters as in the original ENT
statement. Indeed, for subsequent steps one need only write GOTO(R.K.Gl1).
GIVEN:
& _yron where y =t,andat t =1t =0
dat ? o
dyl
—— = t - =]
35 = ¥} = (a/p)y,(t) y(t,) =0
dy2
—= = y! = (- =
3 = v = (-b/a)y; (t) y,(t,) =0
dy5
—_— L
3 = vy = (Qy;(t) yo(t)) =D
y3(t,) = c
where a, b, c, and 4 are constants

145

T " D 1
REQUIRED: For a=2,b=3,¢c=4,d=-1,

Determine, print (and identify)

v, yl(t), ya(t), y5(t) for t =0, .1, .2, .., 1.0 .

Use a computation step-size At = .01

The flow chart for this example is given in FIGURE 40 beclow; the program and output in
FIGURE 4.

START
cl = a/b Print Print Print
R / A= B-= column heading Initial i 20
[} C = —b a bl
l e . .
| '2 C = D = Y Yl Y2 Y5 Conditiong
i yo =k
] —
t
|
s ENTER(R.K.G)
=0 a=2 b .
e - Obtain one step of
=0 b=3 i=0 1 <10 7fe—1 =1+ solution, i.e.,
A No
= 5 Cc = ’-{- 1 yJ(tl + At)
=k d=-1 J =0,1,2,3
At = .01 l
|
. ¥y § EW'S
//'—-——“\\ © Print "one" line yi = (C]_)y9

N.PROB }Y'llS-OOl? Yo Yy Yoo y5 yé - (cg)yl

Il
~~
jon]
S
>

4

FLOW CHART FOR EXAMPLE 20.

FIGURE 4O.

146

EXAMPIE 21.

This example is given to illustrate addition, subtraction, multiplication

and inversion of matrices. We use ENTER statements for multiplication and

P I |

inversion whereas we use general formulas and COUNT statements for addition
and subtraction. The illustrations given in this example do not include
permissible options such as: references to symmetric matrices; references to
the transpose of a matrix; references to internally stored matrices whose
elements are uniformly spaced different from unity; or "accummulative multi-

plication"”, i.e., adding the matrix C to the product matrix AB and recording

the result at C. For ease in reference, it is convenient to identify matrices

as two dimensional arrays. This is readily achieved through the use of BLOC

statements.
GIVEN:
A, B and C, where:
A is a (2 x 2) matrix;
B is a (2 x 2) matrix;
C is a (2 x 3) matrix.
REQUIRED:

Print and identify the following matrices:

1. A 6. D=BxC
2. B 7. E=D+C
-1
5. ¢ 8. H=4A-(a"h)
b, At 9. 1-Aa"1a
T
5. (A7)

The flow chart for this example is given in FIGURE 42.

The program, input and output are listed in FIGURE 43.

MAY.23,:63

DETA = -30000000

A MATRIX
1.0000 2.0000
2.0000 1.0000

A INVERSE

- .3333 . 6667
.6667 - .3333

IDENTITY
1.0000 - .0000
§§ .0000 1.0000

BRLESC

FORAST F62
PROB C906 M.J.ROMANELLI

DEYA® = =33333333
B MATRIX
3.0000 4.0000
5.0000 6.0000
A INV. INV.
1.0000 2.0000
2.0000 1.0000
NULL
.0000 - .0000
.0000 - .0000

45107 EXAMPLE 21

T7.0000
3.0000

33.0000
53.0000

40.0000
56.0000

FIGURE 43.

C MATRIX
8.0000
2.0000

D = B=(C

32.0000
52.0000
E = D+C

40.0000
54.0000

9.0000
1.0000

31.0000
51.0000

40.0000
52.0000

0000001

0000002

0000003

0000004

To form a sum of matrices, {(or we write a general equation
using an index, then by means of an initial setting of the index and an
appropriate COUNT statement, the sum or difference is obtained. As illustrated
on the flow chart and the program, for the sum, E = D + C, we initially set

ar
the index J = 0. The general equation is then expressed as:
SUMMAT El,1,J = D1,1,J + C1,1,J %

So that J takes on the required integer values, we write

COUNT (6)IN(J)GOTO(SUMMAT)

et

Note that J was set equal to zero on line 4 and hence the first evaluation of
the general definition corresponds to summing the first elements of the matrices.

Note also that we set M =2 and N =3 on line 4. This was done only to

19teh 4

illustrate later references to dimensions by name rather than by explicit in-

tegers.

Next, to obtain the inverse we could have written the appropriate ENTER
statement immediately following line 5. However, as in the case of solving
linear equations, the given matrix is replaced with the resulting inverse.

Hence, since we want the original A matrix for future operations, we move A to

T and retain the original at A. We will instruct the computer to invert F
and hence after the inversion is completed, A-l will be recorded at F. To

obtain the inverse of F, we write

where:
MAT.INV is an abbreviation for matrix inversion;
F1,1 is the name of the first element of the matrix to be
5 s 7 . wia & e TG S BEl S0
inverted, {(successive element in consecutive spaces Dy rows);
2 indicates the dimension, i.e., F is a 2 x 2 matrix;

DETA is optional and when specified as above is the name of the

r

value of the determinant of the matrix to be inverted.

157

eal roots of continuous functions are i1llustrated. This example illustrates

=
a "bisection”™ method.

GIVEN:
. 3
F(X) =X -X -1 ;
X, and X, such that f(“o)f(Xl) < 0
€ >0
REQUIRED:
Determine x2,x5,xu,. .,xj, such that |f(Xj)|< € ;
Print and identify, X, and f(Xi) for 1 = 05l 52, s e

In the bisection method, the "next" approximation for the root is defined

®
w

X +X
X - 2__ D2

where f(Xn) < 0 and f(XP) > 0. The function is evaluated for this mean X
and a test is applied to determine if the magnitude of the function is less

than the given €. If the magnitude is less than €, X is the desired root. If

.

the magnitude is not less than €, then the interval in which the root

lies is
diminished by replacing X or Xp by X. We replace X by X if f(X)< 0, or

FtS =44

Yp by X if £(X) > 0. The next mean X is determined and the process continued.

- >

The flow chart for this example is given in FIGURE 44,

159

Since the process will require an indefinite number of evaluations of
the function, we wrote the general definition for arbitrary X and terminated
the general definition and printing of X and f(X) with a "variable" exit, E.
Prior to each entrance to the evaluation, we establish values for the arbi-

trary X and the variable exit, E.

record f_ = f(Xo) and establish either Xp or X_ depending on whether £(X)
was positive or negative.

The function is next evaluated for X = X, with exit E = L, At 4. we
record T, = f(Xl) and establish either Xp or Xn, again depending on whether

f(Xl) was positive or negative.

At 6. the exit E is set equal tc 7. for all future exits from the general
function evaluation. WNext we apply a test to determine if the initial con-
dition is satisfied; i.e., if f(XO)f(Xl) < 0. If the condition is not satis-
ied, this indication is printed and the computer is directed to the next pro-
blem. If the initial condition is satisfied, the initial Xn and Xp required
fior the general process are established and recorded. Hence, we direct the

computer to th

e definition of the mean X and initiate the general process.

The program and results for this example are listed in FIGURE 45. Note
that this program may be modified for other f(X) and corresponding initial

conditions by replacing cards 3 and 15 accordingly.

|y
N

MAY.23,63
PROB

X

10000000
20000000
15000000
12500000
13750000
13125000
13437500
13281250
13203125
13242187
13261719
13251953
13247070
13249512
13248291
13247681
13247375
13247223
13247147
13247185

BRLESC FORAST Fé62
C906 M.J.ROMANELLI

F{X)

1-10000000 1
1 50000000 |1
1 87500000

1-29687500

1 22460938

1-51513672-01
1 82611084-01
1 14575958-01
1-18710613-01
1-21279454-02
1 62088296-02
1 20366507-02
1-46594883-04
1 99479097-03
1 47403882-03
1 21370716-03
1 83552438-04
1 18477852-04
1-14058747-04
1 22094948-05

45107

EXAMPLE 22

FIGURE L5,

0000001

0000002
0000003
0000004
0000005
0000006
0000607
0000008
0000009
0000010
0000011
0000012
0000013
0000014
0000015
0000016
0000017
00ooo018
0000019
0000020
0000021

Ty Yy

START EVE
z VAo

——>{ PRINT HEADER (X)) =X -X -1 » |f]<e ? +——3(N.PROB
i X F(X) PRINT: X ; £(X)

] }l\lo

1 |PRINT BLANK £1(X) = X% -1

Y

“o X = X

o]
€

FLOW CHART FOR EXAMPLE 23.

FIGURE L6.

The program and results are listed in FIGURE 47. Note that this program

may be modified for other f(X) by replacing cards % and 5 accordingly. Note

also, this process may not converge, indeed, it may diverge if f1(X) tends to

Zero.

165

EXAMPLE 24.

This example illustrates the "Regula-Falsi" method for obtaining an

o S

s o 3 Ead o S o ma ~ ~
or a real root of a function, f(X) = O. In this method, the

a) Siaemans pas of \ N
a.) Xn, such that J.\Xn} <0
= \ e al<r \ -

b.) X _, such that IQAP) >0 ;
c.) £(x))

-\ alxr \

a.) I\)

In general, the new approximation,

xnf(xz) = pr(Xn)

X =
f(xp) - f(Xn)

GIVEN:
X and X, such that £(X) £f(X,) <0, £f{X) = X - X - 1, and € > O
o) 1 o) 1
REQUIRED:

Determine X such that f(X) < e. Print and identi

corresponding f£(X)

The flow chart for this example is given in FIGURE 48. Note the similarity
h

to the bisection method flow-chart. The program and results are listed in

167

MAY.23,63
PROB

10000000
20000000
L1666667
12531120
12934374
13112810
13189885
13222827
13236843
132427535
13245320
13246391
13246845
13247038
13247119
13247154
13247169

BRLESC FORAST F62
C906 M.J.ROMANELLI

F(X)

1-10000000 1
1 50000000 1
1-57870370

1-28536303

1-12954.09

1-56588487-01
1-24303747-01
1-10361850-01
1-44039499-02
1-18692584-02
1-79295919-03
1-33630103-03
1-14261375~03
1-60474995-04
1-25643798-04
1-10873904~-04
1-46109160-05

45107 EXAMPLE 24

FIGURE L49.

0000001

0000002
0000003
0000004
0000005
0000006
0000007
0000008
0000009
0000010
0000011
0000012
0000013
0000014
0000015
0000016
0000017
0000018

EXAMPIE 25.

This example illustrates a "constant secant" method for approximating a
real root of a function, f{(X) = 0. Again we assume that Xo and Xl are given
such that

f(XO) f(Xl) < 0.
The slope

) f(Xl) - f(XO)

m =
X -
X X

is computed and the "next" approximation to the root is defined similar to the

Newton-Raphson method, i.e.,

f(Xi)
Yo "% -
GIVEN
£(X) = X° - X - 1
X and X, such that f(XO) f(Xl) <0; €>0.
REQUIRED:
%mmMeX?%JMUU%,smhmm H@ﬁ|<e;
Print and identify X, and f(Xi), i<0,1,2,...,3
The flow-chart for this method is shown in FIGURE 50. The program and cutput

obtained are listed in FIGURE 51.

172

START

X =]
(o]
X, = 2
€ = ,00001

Print Header

Print Blank

¢lT

EVF 2.
‘ 3 —_ .
’_‘:f(x) = X - X - 1 -<E> =71 ffo<\0? B\(e}
. . L
Print: - xl Yes
x, f(x)
= 2.

Y

Print
CONDITIONS

NoT
SATISFIED

4. *
No
- —— 5 i € ? | = - -
% . It] < e £ i’.
x. - X N.PROB
1 o
Yes —
= k.
N.PROB)
N

FLCW CHART FOR EXAMPLE 25.

FIGURE 50.

LT

PROB C906 M.J.ROMANELLI 45107 EXAMPLE 25 23 JULY»63 PAGE i
START X0=1 % Xl=2 ¥ EPS=.00001 2
PRINTKL X FIX)> %2 ENTER(PRINT B)¥ X=X0% SET(E=l.) 3
EVF F=X#u3-X-1 % PRINT{X)F % GOTO(,E) 4
l. FO=FEX=X1ZSET(E=2.)GOTO(EVF) 5
2. IF(F*FOKO)GOTO(3.)} EPRINT<CONDITIONS NOT SATISFIED>ZGOTO(N.PROB}Z 6
3. M=(F-FO) /{X-X0) % SET(E=4.) 7
4. 1F~-ABS{F<EPS)GOTO(N.PROB)Z X=xX-F/MZ GOTO(EVF) 8
END GOTO(START) 9
MAY.23,63 BRLESC FUORAST Fé62
PROB L9906 MeJ.ROMANELLI 45107 EXAMPLE 25 »
X FLX) 0000001
10000000 1-10000000 1 0000002
20000000 1 50000000 1 0000003
11666667 1-57870370 0000004
12631173 1-24785752 0000005
13044269 1-84906120-01 0000006
13185779 1-26035534-01 0000007
13229171 1-76669149-02 0000008
13241950 1-22292803-02 0000009
13245665 1-64576564-03 0000010
13246741 1-18685691-03 0000011
13247053 1-54091212-04 0000012
13247143 1-15633700-04 G000013
13247169 1-45217501-05 0000014

FIGURE 51.

This example illustrates another iterative method for determining an

e

=

approximatior

to a real root of a

f(X) = 0 can be expressed in an equivalent form

X

= F(X)

= 0. Here it is as

The general iteration is then expressed in the form

w

where we assume an initial X

GIVEN:
£(X) =X - X - 1;
X_ ;
€ >0

REQUIRED:

If(XJ) | <e.

Xi+l

"

e
w

1l

F(Xi)

Print and identify X, and f(Xi), i=0,1,2,...,J3.

The flow-chart for this example is given in FIGURE 52.

175

v A
o ulie

START

PRINT HEADER X, F(X)

PRINT BLANK
X=1
C=1/3
€ = .00001

S £(X) = X- X -1 I£(X) |<e ?
T & No Yes
X ; £(X)
/5| (o
X = (x+1)° : N.PROB
N \ /

FLOW CHART FOR EXAMPLE 26

T
L

(]

TR
(971

1

5]
o

c
J/

The program and output obtained are listed in FIGURE 53.

176

LT

23 JULY,63 PAGE 1
PROB T906 M. J.ROMANELLI 45107 EXAMPLE 26 1

START PRINTK X FIX)>%ENTER(PRINT B)Z X=1% C=1/3% EPS$S=.00001 2
EVF F=X*#3-X-1XPRINT(X)F5IF-ABS{F<EPS)GOTO(N.PROB) 3
X={X+1l)»e(C % GOTOLEVF) 4

END GOTO(START) >

MAY.23,63 BRLESC FORAST fFé62

PROB C906 M.J.ROMANELLI 45107 EXAMPLE 26 .

X F(X) 0000001
10000000 1-10000000 1 0000002
12599210 1-25992105 0000003
13122938 1-52372787-01 0000004
13223538 1-10059982-01 0000005
13242687 1-19149254-02 0000006
13246326 1-36388070-03 0000007
13247017 1-69123259-04 0000008
13247149 1-13129931--04 0000009
13247174 1-24939947-05 0000010

FIGURE 53.

EXAMPLE 27.

This example illustrates a "least-squares" method for "fitting" a
polynomial to given tabular data. Although there are "packaged" programs
available for this purpose, this and the next two examples are given to
illustrate how the ENTER statement is used to generate the normal equations
st-squares solutions. To illustrate we consider the follow-

q
ing problem:

GIVEN:
X, y(X,) for i =1,2,3,
1° - 1
Assume this data on cards in standard form, one pair per card.
Since an indefinite number of pairs are given, we will terminate
this data with two blank cards.
REQUIRED:

Cg, and C5 such that

S = :E:: (ﬁ(Xi) = y(Xi))2 is a minimum,

where

- 2
y(Xi) =C +CX + q5xi .

The necessary conditions for a minimum are:

178

To obtain the solution, we must generate and solve the above system of

linear equations in the three unknowns, C C2, and C Note that the matrix

l)

f coefficients of the unknowns is symmetric; i.e.,

3

N
5D

MM

Note also that the system to be generated and solved is of the form illustrated

in EXAMPIE 18, i.e., of the form

where:
A 1is symmetric

C 1is the unknown vector, Cl’ C2, C5 5

179

jo]
=
o

Hence, the following elements must be generated and recorded internally in

consecutive spaces by rows.

e O
<
e
v/’
<
AN

Hl\/ -

AN
> X
Z

3
“<

)

AT A My

To generate the above, the FORAST language includes a convenient ENTER state-
ment of the form

ENTER(F.N.E.)A1,1)n)P1)W %

180

is an abbreviation for, "Form Normal Equations" ;

is the name of the firstelement in the first row of the

symmetric system to be generated;

(space should be reserved for this system with a BLOC

statement)

is an integer (or name of an integer) which specifies the

number of equations in the system to be generated;

(for our example, n = 3)

is the name of the first of (n+l) consecutive elements, in

particular,

General form,

d

+J

S

&y | (X45vy)
Y.

1

181

For our example,

P
i

v

1

\N

=1

iotation, !(X ,¥.), denotes evaluation of the partial derivative
at (Xi’yi) ; (again, space should be reserved for these (n+l) quantities with

a BLOC statement).

W 1is optional and if specified is the name of a weight value to

be applied in the sums, if unspecified, the weight value is

Corresponding to a given point, (Xi’y(xi)’ we instruct the computer to

compute and record the (n+l) quantities at Py Psy ovv , P y. Then, the

1
above ENTER statement tells the computer to make the necessary contributions
to the sums in the normal equations. When all points have been processed in

this manner, we instruct the computer to solve the symmetric system generated

through the use of the ENTER statement

ENTER(SY.SNE)A1,1)3)Cl %

182

Man anlidFSAanm Sa +har ayrasialhla PAr nrintdrno A>» FAr ontry arnthaoaniiant 110a
LllCT DULUWULLUVIL Lo L1ITIL AVALLAUVLT 4Vl _kJL J-LLVJ.LLB i 4 UL ALl DuUDC\iuCLLU o<
desired.
The flow-chart for this example is given in FIGURE 5k.
OmMADM
pwihanl READPT
Clear the augmented Read: Yes
symmetric A matrix area v Tl x, ¥ J =07
R ant ~11 ? — N 2 {41 n miymho AT~
L.Ce¢e DTUL aAall D - v d, \ LIIT IIWllbcl NO
of quantities
read)
~ 09
Enter (F.N.E) i.e.; , =1
Contribute to sums P2 =
in normal equations 2
P, =X
- J
PJ—L = y
(N.PROB)
n
Print and Identify - Solve the symmetric system, 2
CL=~ C2 =~ C(C3 =~— obtain C1, C2, C3

FLOW CHART FOR EXAMPLE 27.

FIGURE 5k,

The program, input data and results obtained for this example are listed in

A FIGURE 55.

',._l

START CLEAR(9)NCS.AT{AL, 1D %

REAULPT READ(X)Y% [F=INV(09=0)GOTO(SOL*N)
Pl=1% P2=X% P3=X#X% P4=Y%
ENTER(FanN.E.)ALy1)3)PL% GOTO(READPT)

SOL'N ENTER(SY.SNZDALLL1)3)CLY
PRINTKCL = »C)l< C2 = >C2< (€3 = >C3% GOTO(N.PROB)

END GUTO(START)
G0 3.0000
ol 243850
»l 2.9402
3 2.8660
o4 2.7632
. 2.6327
+6 2.4760
-7 2.2945
«8 2.0901
-9 1.8648
1.0 1.6209
MAY.23,63 BRLESC FORAST F62
PROB C906 M.J.RUMANELLI 45107 EXAMPLE 27
Cl = 30077021 1 C2 = -10693520 C3 = —-12891375

PROB C906 M.JJROMANELLI 45107
BLOC(ALy1-A3,4/5Y.)P1-P4)C1-C3)

EXAMPLE 27

FIGURE 55.

L

23 JULY,63 PAGE 1

0000001

EXAMPIE 28.

In the previous example we obtained a "polynomial" fit to some tabular
yn

data. In thi

0n

example we will include a computation and printing of the
"residuals"; i.e., the difference between the given functional value and the
approximating functional value at each point. We will also compute and print

the "root mean-square" error.

First, since we need the given functional values to compute residuals,
we will have to make these functional values available after the solution for
the approximating function is obtained. (Recall that we discarded the data
points as soon as their contribution to the normal equations was completed).
Hence, to make the given data available for residual computations, we will
first read and record all of the given data and retain it internally for as
many future references as desired.

To provide for a maximum of say 500 points, we will reserve space for

1000 values of given data, hence we will use a BLOC statement
BLOC(D1 - D1000).

since only two data values are recorded per card; we will specify a

Further, since or 11y

format which departs from standard and indicates the desired departure.

The READ statement to accomplish the reading and recording of a maximum

of 1000 values, two per card has the form
READ-FORMAT(F/2)-(1000)NOS.AT(D1)
where the format F which specifies the particular form desired is:

F FORM (10-12)10-12) 2 %

185

2 ARSI A A mad + +b o~ given Y1 L o " 3 ~ o
To identify and refer to the given X's and Y's we can write a SYN statement

of the form

Hence, to refer to the given data we may refer to the X's, Y's or D's bearing
in mind that the X's are two units apart in internal starage, and likewise,

the Y's are two units apart in internal storage.

The flow chart for this example is given in FIGURE 56.

186

lgt

START

Clear the augmented Read given data = X1,i
-—— symmetric A mtrix area > Xi’ 4 wt i =0 Ny = Y1,i
~ s
i.e., set all > = 0 i=1,2,...,d
: J < 500 \
2J w3 09 Py =1
P2 =
P5 S X2
o - ra——————1 PRINT Blank
S = P)-L =Y
RESID r J
yi+l = Cl + C2Xi+l + 054’{i+1 Print HEADING
) X Y YBAR R
fi+1 = Vi41 T Va1 Contribute to
Normal Equations
:S"' 2
S = ri+l PRINT Blank ‘
b
i =1+2
r PRINT & IDENTIFY
Print: ClL = C2= (€3 =
Xi+18 Yi41 Y1418 Tin
Solve System; obtain)
! C, , Cps Cy <o | 5 oy o [es
i=1+2
~—
Yes { i <27 7 No RMS = S/J PRINT: RMS = ___..< N.PROB)
o Sy

FLOW CHART FOR EXAMPLE 28,

FIGURE 56.

}_.J

- 23 JULY,63 PAGE
PROB C906 M.J.ROMANELLI 45107 EXAMPLE 28

BLOC(Al,1-A3,4/5Y.)P1-P4)C1-C3)DL-DL1000O
SYN (X1=01)Y1=02)2J=09)
START CLEAR(9INOS.AT(ALy1)% READ-FORMAT(F/2)-(1000)NOS.AT(DL1)% SET(I=0)
NEXTPT Pl=1% P2=Xlsl% P3=P2eP2% P&=Yl,]
ENTER(F.N.E<)AL,1)3)PL)Y COUNT(2J72)IN(IIGOTO(NEXTPT)
ENTER(SY.SNC)ALL1)3)CL) 4
PRINT-FORMAT(FO)-<C1l = >Cl< C€C2 = >C2< C3 = >C3% ENTER(PRINT B)

PRINTC X Y YBAR R>T ENTER(PRINT 8)
SET([=0)% 5=0
RESID YBAR=CL1+X141(C2+C3#X1,1)% R=YBAR-Y1lyI% S=S+R=*R%Y

PRINT-FORMAT(FOI-(XLy1)YL,yI)YBARIRE COUNT{2J/2)IN(I)GOTO(RESID)
ENTER(CVITOF)O9)INE RMS=SCRT(2#S/N)Z ENTER(PRINT B8)
PRINT-FORMAT (FO)-<RMS = >RMSZ GOTO(N.PROB)

F FURM(10-12)10-12)2
FO FORM(12-4-10)3-2)1-4)2
END GOTO(START)

0.v 3.0000

-1 2.9850

2 2.9402

3 2.8660

ol 2.7632

«9 2.-63217

) 2.4760

o7 2.2945

-8 2.0901

.9 L.8648

1.0 1.6209

1
1

8

L0
L1
12
13
L4
15
16
17

65T

MAY.23,63 BRLESC FORAST F62

PROB C906 M.J.ROMANELLI 45107 EXAMPLE 28 -

cl = 3.0077 C2 = - 1069 (3 = = 1.2891

X Y YBAR R 0000001

.0000 3.0000 3.0077 - 0077

«1000 2.9850 2.9841 - «0009

QZOC)O 12.‘9"02 2.93“1’" - «0()55

3000 2.8660 2.8596 - «» 0064

« 5000 2.6327 2.6320 - »0007

- 7000 2.2945 2.3012 . 0067

.8G00 2.0901 2.0971 .0070

« 90600 1.8648 1.8673 .0025

1.0000 1.6209 l.6116 - .0093
RMS = 0056

FIGURE 5T.

EXAMPLE 29.

In the previous example of "least-squares curve-fitting", the approxi-
mating function, (the pol
This example illustrates
mating function is non-linear in the unknowns. The method illustrated is
often referred to as the method of "differential corrections". To illustrate

we consider the following problem:

GIVEN:
X y(X), (1 =1,2,5,...) 5
(Here we will assum= the given data is recorded on cards in
standard form with six values per card), X5 Y5 X5, Yoy ete.
Ao and BO, initial estimates of the unknowns A and B in the
approximating function

REQUIRED:

Determine, print and identify, A and B such that

\\ - 2
SH= > (y(Xi) - y(Xi)) is a minimum,
where
. X
y(X) = A(B")

Compute, print and identify residuals and RMS as in the previous
example.
The necessary conditions required to minimize S with respect to A and B

would lead to a system of eguations which is non-linear in the unknowns A and

B. Hence, we first expand y(X,A,B) in a Taylor series about A ;B . We obtain

MACLS L

190

then

)] L
F(KA, + M, B+ 8B) % (X, ,B,) + g, o+ &

AB = y(X,M,AB)
(o]

an approximating function which is linear in the unknowns, M and AB. (The

notation o denotes evaluation of the partial derivative at AO,BO). Note

that we have substituted Ao + M for A, and Bo + AB for B. The necessary

conditions for minimizing

2

———

5. 5 - yx)
Z L1 1

L=

with respect to M and AB are:

oSl Ik

ag < r -§ a:.:
SAE =0 =2
SAB =>i |L J Eﬁlo

or equivalently,

> <-§{-|O>2 e > (& g-;-\> 8-> (yx,) - &(xi,Ao,Bo>>§§|o

: . o ,
1l i i

T ol oy . S L B L ST, sy e v

D GH S M GH ms >) - 5aR N
i 1 O I

191

where:

TT iy ~a 3
nerec, 4o 1

4+ 4+h~r armrra crxrotaAam T mod sty o
9] vl AUV C D‘_)’Dbcul Ll lla vl LA vl
CD = E
< @&l
> (G|
1
o—— ~= ~=1 2
S gl
| S5 o Tlo
.

1

RN

[> WX - y(X LA LBISE

| 3

| ~—

\ 3 (Y(X_;) - Y(X; }A,.\)B)) bo)

\ : L v A\
the previous example, we can use the

normal equations by defining:

-
\O
no

is of the
vl avd
(sk! B!

, the unknown vector;

v

n

P, = y(X,) - v(X,,A , = = .
P, = y(X;) - ¥(X,A,B)) = y(X;) - AP,

AN
e
[}
4
o]
\

After forming the normal equations we can use the ENTER(SY.SNE) to obtain the
corrections, M and AB. We then form
= +
Al AO DA
Bl = BO + AB

which serve as "new" estimates for A and B for repeating the entire process.

To terminate this correction process we will test two conditions:

(l.) if both MAI <€ and iABi<:e we Will consider the problem solved
and direct the computer to the computation and printing of the

residuals;

(2.) if after 10 corrections, (1.

IR \ ~ Iy R 2o o
In either case, (1.) or (z.), we will repeat the process for different initial

estimates, AO and Bo'

The flow chart for this exampleis given in FIGURE 58.

The program and results obtained are listed in FIGURE 59.

193

161

START NEXTC NEXTIT EPDS

Read given data: Reéad: AO, BO i=0 X:+-
—] Xi’ ¥y l =] Print: ‘ 2= Clear the augmented [i F1 =B
1=1,2,...,d AO = BO = symmetric A matrix P2 = AXHZL - P1/B
_ area. i.e., _
2] = C9 A = AO P3 = Yisl - APl
—
B =B all > =0
© A
k=20
\
Contribute to
Yes i <oar ¢ Mo plrMs :VEZT— \ Normal Equations
1} : PRAC Yes
Print . [No ' .
i=14+2 = e Print Blank j@———— k < 10 7 i=1+2
A
\
§ Yes c A ,
Print: kK =k + 1 1< 27 7
X3 vy nr [No
RESID § RCAP No Y
N i =0 o] < e 2 Solve Normal Eguations
- 1+ S
v = AB . S =0 4_Ye~ and - cbtain AA and AB
r=7y - Yiul Print Blank |AB] < e 9
Print Resid. Headinegs l
S = :y I'2
L A=A+
B =B+ AB
PRINT:A = B =

FLOW CHART FOR EXAMPLE 29.

FIGURE 58.

961

) 23 JULY,63 PAGE
PROB C906 M.J.ROMANELLI 45107 EXAMPLE 29

BLOC(AL,y1-A2,3/5Y.)P1=-P3)C1-C2)D1-D1000)
SYN (X1=D1)Y1l=DZ2)

START READ(L1OO00)NOS.AT(DL)E 24=09

NEXTC READ(AQ)BO)% PRINT-FORMAT(F)-<AO = >A0<K BO = >B0% ENTER(PRINT B)
A=A0% B=BO & SET(K=0)

NEXTIT SET(I=0)% CLEARIS)NOS.AT(AL,1)

EPDS Pl=BesX1,1% P2=A%X]1,I*P1/B% P3=Y1l,I-A%P]

ENTER(F.N.E.)ALl,1)2)P1% COUNT(2J/2)IN(I)GOTO(EPDS)
ENTERISY.SNE)AL,1)2)C1% A=A+C1l% B=B+C2
PRINT-FORMAT(F)-<A = >A< B = >B
JF-ABS(CL1<.001)AND-ABSICZ2<.001)GOTO(RCAP)
COUNT(10)IN(K)GOVO(NEXTIT)

PBAC ENTER(PRINT B)%Z GOTO{NEXTC)
RCAP SET(I=0)% S=0% ENTER{PRINT B)%

PRINTKL X Y YBAR R>E ENTER(PRINT 8)
RESLD YBAR=A#BeeX],1% R=YBAR-Y1l,I% S=S+R#R

PRINT-FORMAT(F)-(X1,1)Y1,1)YBAR)R
COUNT{2J/72)IN(I)GOTO(RESID)Z ENTER(CVITUF)Z2J)IN
RMS=5LRT(2%5/N) % PRINT-FORMAT(F)—-<RMS = > RMSZ GOTO(PBAC)

F FORM(12-4-1013-2)1-4)2
END GOTOU(START)

C.0 3.005 0.5 4.223 l.0 5.983
15 8.5 2.0 11.99 2.5 17.
~1.0 1.47 -0.5 2.180 -2.0 o T87

4.0 l.5

1.0 1.0

@ ~N P W N e

O ® ~N 0w N~ O W

20
21
22

>

ol A

P> > D ||

MAY.23,63 BRLESC FORAST F62
PROB C906 M J.ROMANELLI 45107 EXAMPLE 29 *
AQ = 4.0000 BO = 1.5000
= 3.011 B8 = 1.9496
= 29963 B = 2.0025
= 2.9972 8 = 2.0016
X Y YBAR R 0000004
.0000 3.0050 2.9972 - «0078
1.0000 5.9830 5.9993 «0163
2.0000 11.9900 12.0085 «0185
1.0000 1l.4700 1.4974 « 0274
-5000 2.1800 2.1185 - -0615
2.0000 « 7470 « 7481 «0011
MS = <0253
0 = 1.0000 d80 = 1.0000
= 4.6050 B = 4.4132
= L.7647 B = 3.8917
= 2.0481 B = 2.5T47
= 2.8476 B = 1.9399
= 29959 B = 2.0066
= 2.9972 B8 = 2.0017
= 2.9972 B = 2.0016
X Y YBAR R 0000005
«2000 4.2230 4,26404 20174
1.0000 5.9830 5.9993 +0163
1.5000 8.5000 B.4878 - «0122
2.0000 11.9900 12.0085 «0185
2.5000 L7.0000 16,9895 - »0105
1.0000 1.4700 1.4974 <0274
« 2000 2.1800 2.1185% - .0615
2.0000 « 7470 « 7481 0011
MS = .0253

FIGURE 59.

NAAT MIIMmhar oo e e
[¢]

Ao ono S o Aava Ta ST17 =y M. ~
MLULTODT O 41110 TAAQIUpPIT L1l uo cl BCU.CLGL:UL . 1l

numbers are called '"pseudo-random” since their genesis is known and any set

ed may easily be reproduced. Further, for large enough samples, they
+

W)
o]
jof
o
-
@
F

'r"_1+
|9

do ca+4c?y conventional 1ral
G0 saTtlst conventviocnat icaax

Pr
use in various problems. In this example, we illustrate a generator of
normally distributed pseudo-random numbers. Two ENTER statements are used for

gpnprafwng thegse nu

hey have the general form

ENTER(NRNOS1)Al)n)Bl

ENTER (NRNOS2)Al)n)B1

NRNOS 1is an abbreviation for Normal Random Numbers;
Mhn 411~ A3 o+ 2vnt Antrraranc ADNNATT 2w NRANACH .
L1IC LWO UWLOLULLIICL CliLlallCTo, INANVOL alll NWWwWoo, aloc

essential for reproducibility. The initial entry,
NRNOS1, always yields the same set of numbers Sub-

uent entries at NRNOS2 yield sets which differ from

quent ent NRNOS2 y ch

preceding sets.

Al is the name of the first of n standard deviation values;
It is assumed that they are recorded in consecutive
locations in internal storage. For standard deviations
Oy i=1,2,...,n, the pseudo-random numbers produced, Xi’

lie in the interval

i i
n is an integ (or name of an integ r) hich defines the
ber of pseudo-random numbers desired;
Bl is the name of the first of the n pseudo-random numbers
cgenerated
generated.

o)
e}
@

In general, the programmer should establish the 0 values in Ai prior to the
entry to the generator and should reserve space for these and the resulting

values which will be recorded in Bi’ SIE I o P a1l

In the example which follows, we will generate one pseudo-random number
with each entry to NRNOS. Further, we will specify a standard deviation o = 1.
To illustrate, we will generate sets of pseudo-random numbers with set (sample)
size equal to N, where N = 200, 400, 600, 800, 1000, 2000, ... , 5000.

Corresponding to each set N, we will determine, print and identify the following:

the number of negative numbers in the set;

i - N 4 2

[e
e
=

=

the number of positive numbers in the set;

S
3

largest number in the set;

number in the set;

n
>
ct
e
T
93]
=
=
(0]
[a]
ct

MO the number of Xi in the range, -4 < X, < -2.9999 ;

Ml the number of X, in the range, -2.9999 < Xi < -1.9999 ;

M2 the number of X, in the range, -1.9999 < Xi < - .9999 ;

i
M3 the number of Xi in the range, - .9999 < Xi < 0 ;
PO the number of Xi in the range, 0 < Xi < .9999 ;
Pl the number of X, in the range, .9999 < Xi < 1.9999 ;

P2 the number of X, in the range, 1.9999 < X, < 2.9999 ;

< 2.000Q -
~ C LSS

he number of X, in the range, 2.9999 ;

IN

81 the percentage of N which lie within 1 standard deviation of the mean;
52 the percentage of N which lie between 1 and 2 standard deviation of the mean;

S3 the percentage of N which lie between 2 and 3 standard deviation of the mean.

The flow chart for this example is given in FIGURE 60.

The program, input and output are listed in FIGURE 61.

199

00¢

START

Bl B2
Print Header N = 200 Generate the Yes No
n—y = . - - r) - = = : : ?
Print Blank NN = NP=0 | | first nunber, f . > IIN = NN + 1 X < 5X
| | : o Yes
I A B3
. S s X = X
g =1
B BS ¢
Yes
X > L}(? S [Ly: X X o _X
No
. Y
N < 1200 7 [es__ B =
‘ -k i = [x+107%]
N =N + 200 o i=[X+lO
‘ Eai e
‘ N =N + 800
A AATT)
|
Print: _ - —
rin , | Yes P, =P, +1 J + 1 M o=M o+ 1
W;NN; NP; LX; SX N < 5001 7 -
MORNOS
M3;M2; ML ; MO; PO; ‘
Gene c o
P1;P2;P3; | Gererate the Yes Ty e
N.PROB ™ vt nwmer. X
S1;52;583 12Xt number, —
\
i = 0
TAB
Yes § ; .
< = - 1
No i « 5 ? ”- i = i+1 }ja < r

fad
O,

= ;oo(mk + pi)

FLOW CHART FOR

FIGURE

EXAMPLE 30

-
0.

c0c

START

Bl
B6
B2
BS5
83
B4
AATY
MOKNOS
TAB

. N 23 JULY,63 PAGE
PROB C906 M.J.ROMANELLI 45107 EXAMPLE 30

BLOC (M-M10) %
SYN (P=M4)S1=M8) %

PRINTK N NN NP LX SX M3 M2 M1 MO>
CONT < PO Pl P2 P3 S1 S2 $3>% ENTER(PRINT B)%
SET(N=200)NN=0)NP=0)J=0% SX=LX=0% D=1
ENTER (NRNOSL) o) 1)X ¥ CLEAR(8) NOS. AT (M) %
IF (X<0) GO TO (B2) & INT (NP=NP+1L) % IF (X>LX) GO TO (B4)
ENTER (CVFTOINX) I 3 PyI=Pyl+L % GO TG (AATY)
[inT (NN=wiN+1) % IF (X<SX) GO TO (B3)
X==X4 ENTER (CVFTOI)X)I) & INT{K=3-1)ZM, K=M, K+1l% GO TO (AATJ)
SX=X 3% GO Tu (Bd»)
LX=X % GG TO (B&)
COUNTIN) IN(JIGOTO(MORNOS)E CENTER(CVITOFININ'E SET(I=0)G0T0(TAB)%
ENTER (WNnNOSZ2)D)L)X % GO TO (8B1)
INTIK=3-1)% S1+I1=100{(MyK+P,1)/N"'"3 COUNT(3)IN{LI)GCOTO(TAB)%
PRINT-FORMAT (F)~- (NINNINPILX)ISX)(1IEINOS.AT(M)Z
LOUNT (1200/2G0) IN (N) GO TO (MORNOS)
COUNT (5C01/300) IN (N) 6O TO (MORNOSIE (OTO(N.PROE)Z
FORM(4-6)1-3)3-1)12-1-5)1-2)3-1111-3-4)1-3)3-1)11-4-5)1-2)3-1)111-3~4)

CONT1-2)3-1)1-1)11-2-3)1-4)%
END GOTO(START)

¢oe

MAY .2

200
400
600
800
1000
2000
3000
4000
5000

3463
PROB C

NN

110
205
292
398
494
9717
1468
1997
2493

BRLESC

FORAST Fé62

306 MeJ ROMANELLI

NP

90
195
308
402
506

1023
1532
2003
2507

LX SX
3.21 -2.63
3.21 -2.63
3.21 —-2.63
3.21 -3.35
3.21 -3.35
3.21 -3.92
3.21 -3.92
3.21 -3.92
3.24 -3.92

45107

M3

000
000
000
001
001
003
004
005
ou6

EXAMPLE 30

M2

0o7
009
011
0l6
019
038
055
073
091

M1

033
660
086
112
148
2714
435
575
720

FIGURE 61.

MO

0070
0136
0195
0269
0326
0662
0974
1344
L676

PO

0061
0128
0211
0275
0348
0716
1068
1396
1750

P1

025
055
080
107
134
265
403
523
655

P2

003
011
0l6
019
023
041
060
083
100

01
01
01
cl1
01
01
01
01
02

S1

65
66
68
68
67
69
68
68
69

$2

29
29
28
27
28
27
28
27
27

S3

05
05
04
04
04
04
04
04
04

CONCLUSIONS

Specific examples have been employed as a vehicle to enable the novice to
program for the ORDVAC and BRLESC Scientific Computers and to obtain appropri-
ate solutions. While the full generality of the FORAST language has not been
presented, a sufficient varity of approaches are made available to indicate
the flexibility and application of this method. As sophistication is

developed, both mathematically and in programming ability, the student should

re complete discussion of FORAST. Additions tc the

'_J
o
:

age subsequent to the publishing of reference [lj are found in Appendix
A ol this report. Detailed information on available subroutines for plotting

results can be found in reference [21

ACKNOWLEDGEMENTS

to Dr. B. Garfinkel and Lt. H.B. Tingey for their

critical and constructive review of the text.

MICHAEL J. ROMANELLIY

20k

REFERENCES

Campbell, L. W. and Beck, G. A. The Forast Programming Language for
ORDVAC and BRLESC. BRL Report No. 1172, August 1962.

Lanahan, J. BRLESC Output Subroutines for Magnetic Tape Dataplotter.
BRL Technical Note No. 1495, April 1963.

205

APPENDIX A.

SOME ADDITIONS TO THE FORAST LANGUAGE

The following additions to the FORAST language are now available.

1.) GOTO,I (A)B)C)eeeueveunnvnnn. %

where contents of I must be an integer 1,2,3,4. .

The transfer of control is directed to A if I =1

1" 1

" 1

AL u n " " B if I
n AL " u 1 C if I - 5, etc.

n
no

A,B,C, etc., may themselves be indexable names.

2.) GOTO,(I + inc)(A)B)C) %

Same as above with provision for incrementing the existing value of I by

a positive or negative increment.

NOTE: These additions reduce the size of the ORDVAC SYN Table from 64 to 55.

Compiler still checks for synonym full at 6k.

3.) ENTER (PLOT)r)XO)XM)YO)YM)h)ix)iy)

where

o

ix
iy

If

Address of l1lst X

= Address of last X
= Address of 1st Y
= Address of last Y
= Handler number

= distance between X entries)

= distance between Y entries) S ST el o e

r> 0, tape is rewound before return to program is made.

207

This subroutine is designed to be used when a "quick look" at some data
is desired. It is not necessary to determine beforehand the scales, maximum
and minimum values, etc., since the subroutine scans the data and computes the

necessary values.

The subroutine produces (on tape) the information for a 26 by 26 inch *
plot of the data and a plot of the quantities XMAX, XMIN, XSCALE, YMAX, YMIN,
YSCALE as 4 digit (+ or -) integers with 2 digit (4 or -) 10's exponents.

many large variations in Y throughout the ¢ot, one entry to t

o]

may easily use one-half of a reel of tape.

L.) ENTER(SET.TI)u)E.T)B)BMAX %

optional after first entrance for this tape unit.

oo Aiva

u is tape unit integer (eff. addr

1<u<5o0r 9<u<i1h

ess itself is used.)

E.T. is optional; if it is zero (or blank) then the routine goes
to N.PROB when the END TAPE sentinel is read.
If specified (not zero), then the routine jumps to that
address when the END TAPE szantinel is read.

B is the initial address of a block of core storage that is

large enough to hold the largest block on the tape being read.

BMAX is the last address in the storage block for this tape.

SET.TI allows a program to read data on magnetic tape. It sets the computer
so that subsequent READ statements (or A.READ or READBL subroutines) will cause
data to be read from the tape unit specified. Each 80 characters on tape is
considered £o be a "card" by this routine. (Easier use of "formated" hi-speed
printer tapes might be allowed in the future.) As many as six input tapes may
be used in one program by entering this subroutine at different times in the

program, the data will continue with the “card@ that follows the last "card"

Th 1ay be changed to 26 x 13 by means of a manual switch at the plotter board.

208

that was read from that tape. Each unit should have its own block if the

it because a part of a block may need to stay

o]

’1

;
o
=4
4]
<
(]
’1
’1
12

)

c
0
(]
)
ct
jug
@
ct

ct
oy
(]
’1
(4]
)
=
P
]
4]
@
s
(o]
C’-
=
(]
’1
c
=
[N
ct

s being used. When entering with a unit that was

i
d, it is not necessary to specify the storage block addresses;

if specified, they will be ignored. It is not possible to change the storage
block once it has been already assigned. The storage block may be longer than

any block on the tape but must not be shorter than the longest block that is

Liy W Y i 4 “ JLVR

read from the tape. (A "card" requires 8 words of memory storage. The
storage addresses may be larger than OLOOO in the large memory.) The tape
block length can be variable and if any block is longer than the storage
allocated, the rest of the block will be ignored. All tape reading is parity
checked and re-read Tive times before causing the erroneous "card" to be

punched and a RUN ERROR card saying "PAR.ERRORu".

The "E.T." (end tape) address should be zero unless it is actually needed.
this tape unit is rewound, the computer is set to read cards and
control goes to N.PROB. If an address is specified, then these things should
be done by the program before going to N.PROB.

It is desirable that a standard end of tape sentinel be used by everyone.
It is also nice to have a standard end of reel sentinel. This routine uses

"ENDbTAPEbb" (b is blank) as the end of tape sentinel when it appears as the

first ten characters at the beginning of a block and the next ten characters do
not say "ENDbREELbb". When the next ten characters do say "ENDbREELbb", then

it assumes that there is another reel to be read on this same unit, so it re-

winds the tape and halts at 081 so that the operator can mount the new reel.

(The unit no. is in the B address of the halt order.) Standard BRLESC output
will have the END TAPE sentinel if the "rewind tape 8" switch was properly used.
When making tapes off-line, an extra block of one card with this sentinel should

1=

be added at the end of all the data.

209

of previous FORAST or FORTRAN output are automatically skipped.
for "bbBRLESCbb" in characters 11-20.) A dictionary will not be

hna

(910 3

+
v

cled nped
JJLJ-BP\-\.L,

i
b

automatically

+he

A REFAD
Vil A

el

routine may be used and your program can check for the blank cards (you need

only check the first word) before starting to read actual data.

A word within this routine is named SKP.TL and it may be used to

tape lines"

read will skip

then they must

llhﬁl
113

o

i1

NN
240

ot

of ENTER(SET.CI)% will

that many

"eards". (If the skip includes the

. Pasan)

integer is put into SKP

etween
etweern

set the computer for reading cards

6

fskip

If it is set to an integer (not fl.pt.), then the next tape

"header cards",

=\
L)

1nse
211C o

(SET.CI is a small

subroutine within the SET.TI subroutine. If tape No is being used instead

of card input, then it sets for tape 6 input. If cards or tape 6 is being

used at the time SET.CI is entered, it does nothing.)

There are three possible error prints in this subroutine. They are:

SET.TI 6 Tried to use more than six tape units.
Qmm mT _RITT Tawra noagatdiira hiifPfar 1ancsth (S BMAYYM Ar Toncth S 14
ol « L L=DULS llave liItgaAulvo MUl LTl LT LI Uil . A\ - Lina gy vl 4 Clig vl ERe)
PAR.ERRORu Parity error on tape unit u. Is preceded by the "card"

that contains the error.

It is permissible to set for tape unit u when the same unit u is being

used at the time SET.TIL

5.) GOTO(C.PROB)%

1.

Il

D

N DN 2 - L
L.nuUD 15 UL
running of several

to N.PROB and does

W

is entered.

narn

I
> Ol d

programs without stopping between them.

everything that N.PROB normally does eXxcept for putting

It is similar

purposes of tape 6 input, tape 8 output and for operator control of the

computer, several programs combined by using C.PROB will still be con-

210

)

F4
P

8

Z
P

3
/

6.)

Either ENTER or GOTO (or any jump order) may be used to enter C.PROB.
Any new program that is compiled after going to C.PROB must have

a PROB card as its first card. It is permissible to allow a READ state-

ment to read this PROB card as the sentinel to indicate that the

previous problem is done running if the name C.PROB was used somewhere

in the program. (If C.PROB is in the dictionary, then reading a PROB

card causes control to go to C.PROB subroutine and the PROB card is

also used as the first card of the next program to be compiled.)

In any set of programs, the last one should not use C.PROB. (If
-

this is done and tape 6 input is used, then the next problem will be done
as a continuation of your problem.)

The "DATE" will be propagated through all the programs if it precedes
the first one.

When using C.PROB, the "card counter" (067) and the input-output
options will remain set to what they were at the completion of the
previous program. (The permanent constant block (P4O-07L) is not re-
read before the next program is compiled. However ERROR (066) and M.DUMP
(058) are reset to N.PROB)

After a RUN ERROR print, control goes to N.PROB (not C.PROB) unless

the program has used ERROR as a location.

1f tape input has been used (SET.TI subroutine), C.PROB will set

for "card input" before compiling the next program.
ENTER(MAX.)A)B)C)....... %

MAX is a subroutine that finds the largest floating point number and

stores it in the last address specified in the ENTER statement.

211

9.)

10.)

and stores it in the last address specified.
ENTER(MAX.I)I)J)K)..ouunn.. %
MAX.T is subroutine that finds the largest integer and stores it

a
in the last address specified.

MIN.I is a subroutine that finds the smallest integer and stores it

in the last address specified.

In each of the above four subroutines (actually four entrances to ore
subroutine), the number of arguments is variable and is determined by the
addresses written in the ENTER statement. (There must be at

least two arguments.) The last address is always the store address and

is not used as an argument. Each argument is a single number, not a

Care must be exercised in using negative integers as arguments for
MAX.I or MIN.I because 2 "negative integer" in an index register will
appear as a large positive integer. (The comparison is made on a full

word basis.)

The next order following one of the subroutine entrances must not be

a NOP. (It won't be unless you write one as an assembly order.)

BNTER(MOD.)A)B)C %

are the

he ENTER

This subroutine will compute C = A(mod B) where A,B, and

C
in t

[o¥
=

respective addresses of floating point numbers as indicate

B P
erms ol a

t

. 1 y & -~ . N e - v wfia/n o
statement above. It is defined as C = A - WHOLE(A/B)*B in

FORAST formula.

212

l_.l
l_—l
NS

Six optional arguments have been added to the MAT MP Subroutine to allow
the elements of the rows and columns of the matrices to be stores in

equally spaced memory positions.
ENTER(MAT.W)All)BM)cll)l)J)k)z)ra)ca)rb)cb)rc)cc)%

where

All’Bll’Cll are the addresses of the first elements

of the respective matrices.

i, j, k are the dimensions of the matrices
(j is always the commoQ~dimension.)

z is a 3 digit sexadecimal number (Odld2d5)
where dl indicates the options applying
to matrix A, d, to matrix B, and d, to
matrix C.

di = 0 means to use the matrix as stored,
not augmented

d. = 1 means to use the transpose of the

matrix stored.

d, = 2 means the matrix is augmented

d, = 3 means both 1 and 2 apply

if d, = k4, 5, 6, or 7 it means to accumulate

in C as well as above options.

ra is the distance between the first elements of each
row of matrix A.

(ie) address A.. - address A

ei3

ca is the distance between the first elements of

c
each column of matrix A.

(ie) address A , - address A)

2

Ty sCy 5 Tl have the same meaning for matrices B and C.

Pairs of arguments may be omitted from the right.
Zero arguments for r and ¢ are not valid. When
r and ¢ is specified, the augment portion of =z

for that matrix is ignored.

EXAMPLE:
Given: aj; bll 11 85 b12 5 a15 b15 13 X X XX
asy b2l Cs 8pp b22 oo a25 b25 c25 X XXX
a b c a,, b c a,, b c X XXX

51 P51 31 32 P32 ©32

33 P33 "33
S S 4

ENTER (MAT.MP)a ,)b, Je;;)3)3)3)0104)13)3)15)3)15)3)%

| AD Accession No.
:Bn.l_listic Research Laboratories, APG
 INTRODUCTORY PROGRAMMING FOR ORDVAC AND BRLESC

iFORAST (Formula and Assembly Translator)
|

UNCLASSIFIED

Computers - Progremming
Programming language
ORDVAC - Programming
BRLESC - Progremming

Michael J. Romanelli
| BRL Report No. 1209 July 1963
, .

| RDT & E Project No. 1MO10501A003
| UNCLASSIFTED Report

FORAST is a programming language designed for use on ORDVAC and BRLESC, the
high-speed digital computers of the Ballistic Research Laboratories. Programs
written in this language, with minor limitations, may be executed on either
computer. BRL Report No. 1172, [1], describes FORAST in its generality and was
written primarily for professional programmers. This report is intendeé for the
novice. Fundamental concepts and details of the languege are illustrated in meny
exemples so that the novice is taught how to program and obtain practical solu-
,tions for & variety of mathematicel problems. Intended as a supplement to {1],

. this report does not illustrate the full generality of the languege. Some of the
meterial is repetitious but amplified and several references are made to [1].

T
1
|

AD Accession No. UNCLASSIFIED
Ballistic Research Laboratories, APG
INTRODUCTORY PROGRAMMING FOR ORDVAC AND BRLESC
FORAST (Formula and Assembly Transletor)

Michaeel J. Romanelli

Computers - Programming
Programming language
ORDVAC - Programming
BRLESC - Programming
BRL Report No. 1209 July 1963

RDT & X Project No. 1MO10501A003 1
UNCLASSIFIED Report

FORAST is a programming language designed for use on ORDVAC and BRLESC, the
high-speed digital computers of the Ballistic Research Laboratories. Programs
vritten in this lenguage, with minor limitations, may be executed on either
computer. BRL Report No. 1172, [1], describes FORAST in its generality and was
written primarily for professional programmers. This report is intended for the
novice. Fundamental concepts and details of the language are illustrated ln meny
cxamples so that the novice is taught hov to program and obtain practical solu-
tions for a variety of mathematical problems. Intended as a supplement to (1],
thie report does not illustrate the full generality of the language. Socme of the
material is repetitious but mmplified and several references are made to (13,

AD Accession No.

:Ballistic Research Laboratories, AFG

+ INTRODUCTORY PROGRAMMING FOR ORDVAC AND BRLESC
| FORAST (Formula and Assenmbly Translator)

| Michael J. Romsnelli

UNCLASSIFIED

Computers - Programming
Prograrming language
ORDVAC - Programming

' BRLESC - Prograrmming
BEL Report No. 1209 July 1963

'RDT & E Project No. 1MD1050LA003
' UNCLASSIFIED Report

FORAST is a programming language designed for use on ORDVAC and BRLESC, the
'high-speed digitel computers of the Ballistic Research Lsborztories. Programs
iwritten in this langusge, with mipor limitations, may be executed on either
‘computer. BRL Report No. 1172, [1], describes FORAST in its generslity and was
jwritten primarily for professional programmers. This report is intended for the
novice. Fundementel concepts and details of the language are 1llustrated in many
examples so that the novice is taught how to program and obtain practical solu-
tions for a variety of mathematical problems. Intended &s & supplement to [1],
this report does not illustrate the full generality of the langumge. Some of the
material is repetitious but amplified and several references are made to [1].

. BRL Report No. 1209 July 1963

i ROT & E Project No. 1MO10501A003

novice,
5 examples 50 that the novice is teught how to program and obtaln practical solu-

i
(
1
1

AD Accession No. UNCLASSIFIXD
Ballistic Research Laboratories, APG
INTRODUCTORY PROGRAMMING FOR ORDVAC AND BRLESC
FORAST (Formula and Assembly Tramslator)

Micheel J. Romanelli

|
Computers « Programming !
Programuing language |
ORDVAC -~ Programmning |
BRLESC - Programming !
|
|
|

UNCLASSIFIED Report

FORAST is a programming language designed for use on ORDVAC and BRLESC, the
high-speed digital computers of the Ballistic Research Laboratories. Programs
written in this languege, with minor limitations, may be executed on either
computer. ERL Report No. 1172, [1], described FORAST in its generality and was
vritten primarily for professional programmers. This report is intended for the
Fupdamental concepts and details of the language are illustrated in many

tions for & varlety of methematical problems. Intended as a supplement to [1],
this report does not illustrate the full generality of the langumge. Some of the
material is repetitious but amplified and seversl references are made to [1].

N Acceseion No.
!Ballistic Research Laboratories, AFG

UNCLASSIFIED

: INTRODUCTORY PROGRAMMING FOR CRDVAC AND BRLESC

| FORAST (Fornmla and Assembly Translator)
‘Michael J. Romanelli

Computers - Programming
Prograrming language
ORDVAC - Programming

! BRLESC - Programuing
i BRL Report No. 1209 July 1963

IRDT & E Project No. 1MOLOSOLAOO3

' UNCLASSIFIED Report

FORAST is a prograrming languege designed for use on ORDVAC and BRLESC, the
high-speed digital computers of the Ballistic Research Laborztories. Programs
written in this lenguage, with minor limitations, may be executed on either
computer. BRL Report No. 1172, [1], describes FORAST in its generality and was
written primarily for profcssional programmers. This report 1s inteanded for the
novice. Fundamcntal concepts and detzils cf the langusge are illustrated in many
examples so that the novice is taught how tc program ané obtain practicel solu-
tions for a variety of methematical problems. Intended &s a supplement to [11],
this repcrt does not illustrate the full gemerality of the language. Some of the
material is repctitious but amplified and several references are made to [1].

T
i AD

Accession No. UNCLASSIFIED

i Balligtic Research Laboratories, APG

+ INTRODUCTCRY FROGRAMMING FOR ORDVAC AND ERLESC
. FORAST (Formila end Assembly Translstor)
* Michael J. Romanelli

Jomputers - Programming
Programming language
ORDVAC - Programming

i
BRL Report No. 1209 July 1963

BRLESC -~ Programming

RDT & E Project No. 1MO10501A003
. UNCLASSIFIED Report

FORAST is a programming language designed for use on ORDVAC and BRLESC, the

" high-speed digital computers of the Ballistic Research Laboratories. Programs
. written in this language, with minor limitations, may be executed on either
. computer. ERL Report No. 1172, [1], describes FORAST in its generality and vas
written primerily for professional programmers. This report is intended for the
novice. Fundamental concepts and details of the language arc illustrated ln many
exarples so that the novice is taught hew to program and obtain practical solu-
tions for a variety of mathematical problems. Intended as a supplement to (1],
this report does mot illustrate the full genmerality of the languege. Some of the
materisl is repetitious but amplified and several references are made to [1].

AD Accessicon No.

Bellistic Research Laboratories, APG
INTRODUCTORY PROGRAMMING FOR ORDVAC AND BRLESC
. FORAST (Formuls &nd Asserbly Translator)
Michael J. Romenelli

UNCLASSIFIED

Computers - Prograrring
Programming language
ORDVAC - Progrercing
BRLESC - Programming
BRL Report No. 1209 July 1963
RIT & E Project No. 1MO10501A003
UNCLASSIFIED Report

FORAST is a programming languege designed for use on ORDVAC and BRLESC, the
‘high-speed digital computers of the Ballistic Research Laboratories. Programs
iwritten in this language, with minor limitations, may be executed on either
‘computer. BRL Report No. 1172, [1], descrides FORAST in its genmerality and was
written primarily for professional programmers. This report is intended for the
novice. Fundamental concepts and detslls of the languege are illustrated in meny
examples 50 thst the movice is taught how to program and obtain practical solu-
tions for a variety of mathematical probtlems. Intended as & supplement to [1],
this report does not i1llustrate the full generality of the language. Some of the
meterial is repetitious but smplified and seversl references are made to [1].

AD Accession No. UNCLASSIFIED
Ballistic Research Laboratories, APG
INTRODUCTORY PROGRAMMING FOR ORDVAC AND ERLESC
FORAST (Formula and Assembly Translator)

Michael J. Romanelli

Corputers - Programming
Prograxming langusge
ORDVAC « Programming
BRLESC - Programzing
BRL Report No. 1209 July 1963

RDT & E Project No. 1MO10501A003
UNCLASSIFIED Report

FORAST is a programming language designed for use on ORDVAC and BRIESC, the
high-speed digital computers of the Ballistic Research Laboratories. Progrrams
written in this languege, with minor limjtations, mdy be executed on elther

. computer. BERL Report No. 1172, [1], described FORAST in its generality and vas

. written primarily for professionel programmers. This report 1s intended for the
novice. Fundamental concepts and details of the language are illustrated in many

. exsmples 50 that the novice is taught how to program and obtain practical sclu-

tions for & variety of mathematical problems. Intended as & supplement to {13,

. this report does not illustrate the full genmeralilty of the language. Some of the

| material is repetitious but smplified and several references are made to {aj.

